AI Article Synopsis

  • Sialic acid and sialyl Lewis antigens are present on the glycans of malignant human cells, and their levels can serve as tumor markers linked to cancer progression.
  • The study focused on comparing the levels of Lewis blood group antigens in tumor tissues, adjacent intermediate zones, and normal kidney tissues from 30 patients using an ELISA-like test.
  • Findings showed that cancerous tissues exhibited significantly higher levels of specific sialic acid and sialyl Lewis structures compared to healthy and intermediate tissues, suggesting a potential role for these antigens in tumor development.

Article Abstract

Sialic acid and sialyl Lewisa/x are found on N- and O-glycans of many human malignant cells. Carbohydrate antigens can be used as tumor markers, and an increase of their levels in cancer cells is associated with tumor progression. The aim of this study was to assess the level of some Lewis blood group antigens on glycoproteins in tumor (cancer tissue), intermediate zone (adjacent to tumor tissue), and normal renal cortex/medulla (uninvolved by tumor). The study was performed on tissues taken from 30 patients. Relative amounts of sugar structures of proteins with molecular masses above 30 kDa were determined by ELISA-like test with biotinylated lectins: MAA (Maackia amurensis), SNA (Sambucus nigra), and monoclonal antibodies anti-sialyl Lewisa/x.∙ Higher expression of all examined structures was revealed in cancer tissues. Significant increases were observed for sialic acid linked α 2-3 in cancer tissues when compared to healthy ones and also among intermediate and healthy tissues. The sialic acid linked α 2-6 and sialyl Lewisx structures were significantly increased in cancerous cells when compared to normal and intermediate renal tissue. In case of sialyl Lewisa antigen, a significant difference was discovered between normal and intermediate tissue. Our results confirm that the examined Lewis antigens can be involved in tumor development. Their increase in cancer tissues can suggest their specific role in the process.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cancer tissues
16
sialic acid
12
lewis blood
8
blood group
8
group antigens
8
antigens glycoproteins
8
tissues sialic
8
acid linked
8
normal intermediate
8
cancer
6

Similar Publications

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.

Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.

View Article and Find Full Text PDF

Hyperoxia-activated Nrf2 regulates ferroptosis in intestinal epithelial cells and intervenes in inflammatory reaction through COX-2/PGE2/EP2 pathway.

Mol Med

January 2025

Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.

The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo.

View Article and Find Full Text PDF

RNA-binding motif protein RBM39 enhances the proliferation of gastric cancer cells by facilitating an oncogenic splicing switch in MRPL33.

Acta Pharmacol Sin

January 2025

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.

Gastric cancer is a malignant gastrointestinal disease characterized by high morbidity and mortality rates worldwide. The occurrence and progression of gastric cancer are influenced by various factors, including the abnormal alternative splicing of key genes. Recently, RBM39 has emerged as a tumor biomarker that regulates alternative splicing in several types of cancer.

View Article and Find Full Text PDF

The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!