A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catalytic preference of Salmonella typhimurium LT2 sialidase for N-acetylneuraminic acid residues over N-glycolylneuraminic acid residues. | LitMetric

In a comparison of sialidase activities toward N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), we found that Salmonella typhimurium LT2 sialidase (STSA) hardly cleaved 4-methylumbelliferyl Neu5Gc (4MU-Neu5Gc). The k cat/K m value of STSA for 4MU-Neu5Gc was found to be 110 times lower than that for 4-methylumbelliferyl Neu5Ac (4MU-Neu5Ac). Additionally, STSA had remarkably weak ability to cleave α2-3-linked-Neu5Gc contained in gangliosides and equine erythrocytes. In silico analysis based on first-principle calculations with transition-state analogues suggested that the binding affinity of Neu5Gc2en is 14.3 kcal/mol more unstable than that of Neu5Ac2en. The results indicated that STSA preferentially cleaves Neu5Ac residues rather than Neu5Gc residues, which is important for anyone using this enzyme to cleave α2-3-linked sialic acids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678298PMC
http://dx.doi.org/10.1016/j.fob.2013.05.002DOI Listing

Publication Analysis

Top Keywords

salmonella typhimurium
8
typhimurium lt2
8
lt2 sialidase
8
n-acetylneuraminic acid
8
acid residues
8
n-glycolylneuraminic acid
8
catalytic preference
4
preference salmonella
4
sialidase n-acetylneuraminic
4
acid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!