Brassinosteroid regulates seed size and shape in Arabidopsis.

Plant Physiol

Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

Published: August 2013

AI Article Synopsis

  • Brassinosteroid (BR) is essential for determining the size, mass, and shape of Arabidopsis seeds, with BR-deficient mutants showing smaller and less elongated seeds due to various developmental deficiencies.
  • The det2 mutant exhibits delayed embryo development and alterations in seed anatomy, leading to normal-sized seeds upon pollination with wild-type pollen but still maintains a shortened shape.
  • BR positively regulates key genes involved in seed size while inhibiting negative regulators, demonstrating that BR influences seed development pathways through transcriptional modulation.

Article Abstract

Seed development is important for agriculture productivity. We demonstrate that brassinosteroid (BR) plays crucial roles in determining the size, mass, and shape of Arabidopsis (Arabidopsis thaliana) seeds. The seeds of the BR-deficient mutant de-etiolated2 (det2) are smaller and less elongated than those of wild-type plants due to a decreased seed cavity, reduced endosperm volume, and integument cell length. The det2 mutant also showed delay in embryo development, with reduction in both the size and number of embryo cells. Pollination of det2 flowers with wild-type pollen yielded seeds of normal size but still shortened shape, indicating that the BR produced by the zygotic embryo and endosperm is sufficient for increasing seed volume but not for seed elongation, which apparently requires BR produced from maternal tissues. BR activates expression of SHORT HYPOCOTYL UNDER BLUE1, MINISEED3, and HAIKU2, which are known positive regulators of seed size, but represses APETALA2 and AUXIN RESPONSE FACTOR2, which are negative regulators of seed size. These genes are bound in vivo by the BR-activated transcription factor BRASSINAZOLE-RESISTANT1 (BZR1), and they are known to influence specific processes of integument, endosperm, and embryo development. Our results demonstrate that BR regulates seed size and seed shape by transcriptionally modulating specific seed developmental pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729775PMC
http://dx.doi.org/10.1104/pp.113.217703DOI Listing

Publication Analysis

Top Keywords

seed size
16
seed
10
regulates seed
8
shape arabidopsis
8
embryo development
8
regulators seed
8
size
7
brassinosteroid regulates
4
shape
4
size shape
4

Similar Publications

A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.

View Article and Find Full Text PDF

The study employed network Meta-analysis to evaluate the efficacy and safety of Chinese patent medicines combined with recombinant human interferon α-2b(interferon) in the treatment of cervical human papillomavirus(HPV) infections. The relevant randomized controlled trial(RCT) published from inception to May 8, 2024 were retrieved from CNKI, Wanfang, VIP, SinoMed, PubMed, Cochrane Library, EMbase, and Web of Science. The modified Jadad scale and the Cochrane risk of bias tool were used to evaluate the quality of the included studies, and RevMan 5.

View Article and Find Full Text PDF

Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions.

View Article and Find Full Text PDF

α-Synuclein interaction with POPC/POPS vesicles.

Soft Matter

January 2025

Physical Chemistry, Chemistry Centre, Lund University, SE-22100 Lund, Sweden.

We have investigated the adsorption of the amyloid-forming protein α-Synuclein (αSyn) onto small unilamellar vesicles composed of a mixture of zwitterionic POPC and anionic POPS lipids. αSyn monomers adsorb onto the anionic lipid vesicles where they adopt an α-helical secondary structure. The degree of adsorption depends on the fraction of anionic lipid in the mixed lipid membrane, but one needs to consider the electrostatic shift of the serine p with increasing fraction of POPS.

View Article and Find Full Text PDF

In this study, the extract of leaf and flower of was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!