Inhibition of human Kv3.1 current expressed in Xenopus oocytes by the toxic venom fraction of Androctonus australis hector.

Arch Pharm Res

Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, BP 74, 1002, Tunis, Tunisia,

Published: November 2014

AahG50, the toxic fraction of Androctonus australis hector venom, was studied on human Kv3.1 channels activation, stably expressed in Xenopus oocytes using the two-electrode voltage clamp technique. AahG50 reduced Kv3.1 currents in a reversible concentration-dependent manner, with an IC50 value and a Hill coefficient of 40.4 ± 0.2 μg/ml and 1.3 ± 0.05, respectively. AahG50 inhibited IKv3.1 without modifying the current activation kinetics. The AahG50-induced inhibition of Kv3.1 channels was voltage-dependent, with a gradual increase at lower concentrations and over the voltage range of channels opening. However, at higher concentrations, the inhibition exhibited voltage dependence only in the first range of channels opening from -20 to +10 mV, but demonstrates a low degree of voltage-dependence when channels are fully activated. In the literature, toxins have previously been isolated from AahG50, KAaH1 and KAaH2 and were reported not to have any effect on IKv3.1. The present article's findings suggest that AahG50 may contain a peptidic component active on Kv3.1 channels, which inhibits IKv3.1 in a selective manner.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-013-0176-5DOI Listing

Publication Analysis

Top Keywords

kv31 channels
12
human kv31
8
expressed xenopus
8
xenopus oocytes
8
fraction androctonus
8
androctonus australis
8
australis hector
8
range channels
8
channels opening
8
channels
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!