Efficient photon management schemes are crucial for improving the energy conversion efficiency of photovoltaic devices; they can lead potentially to reduced material usage and cost for these devices. In this review, photon trapping mechanisms are discussed briefly in the beginning, followed by a summary of recent progress on a number of major categories of nanostructures with intriguing photon management properties. Specifically, nanostructures including nanowires, nanopillars, nanopyramids, nanocones, nanospikes, and so forth, have been reviewed comprehensively with materials including Si, Ge, CdS, CIGS, ZnO, etc. It is found that these materials with diverse configurations have tunable photon management properties, namely, optical reflectance, transmittance and absorption. Investigations on these nanostructures have not only shed light on the fundamental interplay between photons and materials at the nanometer scale, but also suggested a potential pathway for a new generation of photovoltaic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr01152f | DOI Listing |
Nat Commun
January 2025
ZJU-UIUC Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, China.
The bidirectional interactions between metamaterials and artificial intelligence have recently attracted immense interest to motivate scientists to revisit respective communities, giving rise to the proliferation of intelligent metamaterials and metamaterials intelligence. Owning to the strong nonlinear fitting and generalization ability, artificial intelligence is poised to serve as a materials-savvy surrogate electromagnetic simulator and a high-speed computing nucleus that drives numerous self-driving metamaterial applications, such as invisibility cloak, imaging, detection, and wireless communication. In turn, metamaterials create a versatile electromagnetic manipulator for wave-based analogue computing to be complementary with conventional electronic computing.
View Article and Find Full Text PDFActa Biomater
January 2025
Zhejiang Trusyou Medical Instruments Co., Ltd.,325000, China.
Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency.
View Article and Find Full Text PDFR I Med J (2013)
February 2025
Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence RI.
Coronary artery disease (CAD) remains a leading cause of morbidity and mortality worldwide, necessitating advancements in diagnostic techniques. Coronary CT angiography (CCTA) has emerged as a pivotal non-invasive tool for evaluating coronary artery anatomy and detecting atherosclerotic plaque burden with high spatial resolution. This review explores the evolution of CCTA, highlighting its technological advancements, clinical applications, and challenges.
View Article and Find Full Text PDFNucl Med Commun
January 2025
Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina.
Objective: The appropriate clinical management of indeterminate small renal masses can be improved based on accurate risk stratification. This study aimed to investigate the impact of renal function on the uptake of technetium-99m (99mTc)-sestamibi, a widely available imaging agent that can be utilized to identify oncocytomas and other benign/indolent renal masses.
Methods: A retrospective cohort study was conducted, involving 100 consecutive patients who underwent 99mTc-sestamibi single-photon emission computed tomography/computed tomography.
Food Chem X
January 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
Here, we report a SERS based VFA using PNC as a sensing substrate for highly sensitive multiplex mycotoxins detection. The PNC was fabricated by filtration-based self-assembled monodisperse SiO NPs on a filter membrane as a template, and the obtained PNC had an ordered complementary inverse opal structure. In parallel, three kinds of Raman dyes encoding Au@Ag, Au@Ag and Au@Ag SERS nanotags were synthesized for the detection of OTA, AFB1 and ZON.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!