Nitrate contamination of groundwater under land used for intensive-agriculture is probably the most worrisome agro-hydrological sustainability problem worldwide. Vadose-zone samples from 0 to 9 m depth under citrus orchards overlying an unconfined aquifer were analyzed for variables controlling water flow and the fate and transport of nitrogen fertilizers. Steady-state estimates of water and NO3-N fluxes to groundwater were found to vary spatially in the ranges of 90-330 mm yr(-1) and 50-220 kg ha(-1) yr(-1), respectively. Calibration of transient models to two selected vadose-zone profiles required limiting the concentration of NO3-N in the solution that is taken up by the roots to 30 mg L(-1). Results of an independent lysimeter experiment showed a similar nitrogen-uptake regime. Simulations of past conditions revealed a significant correlation between NO3-N flux to groundwater and the previous year's precipitation. Simulations of different nitrogen-application rates showed that using half of the nitrogen fertilizer added to the irrigation water by farmers would reduce average NO3-N flux to groundwater by 70%, decrease root nitrogen uptake by 20% and reduce the average pore water NO3-N concentration in the deep vadose zone to below the Israeli drinking water standard; hence this rate of nitrogen application was found to be agro-hydrologically sustainable. Beyond the investigation of nitrate fluxes to groundwater under citrus orchards and the interesting case-study aspects, this work demonstrates a methodology that enables skillful decisions concerning joint sustainability of both the water resource and agricultural production in a common environmental setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconhyd.2013.05.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!