Spin ice is a magnetic analog of H2O ice that harbors dense static disorder. Dipolar interactions between classical spins yield a frozen frustrated state with residual configurational Pauling entropy and emergent magnetic monopolar quasiparticles. Introducing quantum fluctuations is of great interest as this could melt spin ice and allow coherent propagation of monopoles. Here, we report experimental evidence for quantum dynamics of magnetic monopolar quasiparticles in a new class of spin ice based on exchange interactions, Pr2Zr2O7. Narrow pinch point features in otherwise diffuse elastic neutron scattering reflects adherence to a divergence-free constraint for disordered spins on long time scales. Magnetic susceptibility and specific heat data correspondingly show exponentially activated behaviors. In sharp contrast to conventional ice, however, >90% of the neutron scattering is inelastic and devoid of pinch points furnishing evidence for magnetic monopolar quantum fluctuations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms2914 | DOI Listing |
J Phys Chem Lett
January 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
Perovskite quantum dots (QDs) are high-efficiency optoelectronic materials attracting great interest, but further improvement in the luminescence efficiency is crucial for their application. In this work, we enhance both the spontaneous emission rate and the photoluminescence (PL) intensity of CsPbBr QDs by coupling them to a high quality () factor SiO microdisk cavity. Compared to conventional metal plasmonic cavities, the dielectric cavity structure suppresses the effects of quenching and energy transfer, which could introduce complex fluctuations and nonradiative decays.
View Article and Find Full Text PDFNature
January 2025
Department of Physics, Columbia University, New York, NY, USA.
The discovery of superconductivity in twisted bilayer and trilayer graphene has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
A multiscale quantum mechanical (QM)/classical approach is presented that is able to model the optical properties of complex nanostructures composed of a molecular system adsorbed on metal nanoparticles. The latter is described by a combined atomistic-continuum model, where the core is described using the implicit boundary element method (BEM) and the surface retains a fully atomistic picture and is treated employing the frequency-dependent fluctuating charge and fluctuating dipole (ωFQFμ) approach. The integrated QM/ωFQFμ-BEM model is numerically compared with state-of-the-art fully atomistic approaches, and the quality of the continuum/core partition is evaluated.
View Article and Find Full Text PDFBMJ Open
January 2025
Pharmaceutics and Social Pharmacy, Addis Ababa University College of Health Sciences, Addis Ababa, Ethiopia.
Objective: This study analysed the spatial and temporal patterns of cervical cancer incidence in Addis Ababa from 2012 to 2021.
Design: An ecological study was conducted from 1 September to 30 November 2023 to examine the spatiotemporal trends of cervical cancer incidence.
Setting: The research was conducted in Addis Ababa, the capital city of Ethiopia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!