Chloramine is widely used in United States drinking water systems as a secondary disinfectant, which may promote the growth of nitrifying bacteria because ammonia is present. At the onset of nitrification, both nitrifying bacteria and their products exert a monochloramine demand, decreasing the residual disinfectant concentration in water distribution systems. This work investigated another potentially significant mechanism for residual disinfectant loss: monochloramine cometabolism by ammonia-oxidizing bacteria (AOB). Monochloramine cometabolism was studied with the pure culture AOB Nitrosomonas europaea (ATCC 19718) in batch kinetic experiments under drinking water conditions. Three batch reactors were used in each experiment: a positive control to estimate the ammonia kinetic parameters, a negative control to account for abiotic reactions, and a cometabolism reactor to estimate the cometabolism kinetic constants. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to all experimental data. The cometabolism reactors showed a more rapid monochloramine decay than in the negative controls, demonstrating that cometabolism occurs. Cometabolism kinetics were best described by a pseudo first order model with a reductant term to account for ammonia availability. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (30-60% of the observed monochloramine decay). These results suggest that monochloramine cometabolism should occur in practice and may be a significant contribution to monochloramine decay during nitrification episodes in drinking water distribution systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2013.05.019 | DOI Listing |
Chemosphere
March 2021
Chair, Civil and Environmental Engineering, University of Nevada, Reno, NV, USA. Electronic address:
Disinfection in water treatment and reclamation systems eliminates the potential health risks associated with waterborne pathogens, however it may produce disinfection by-products (DBPs) harmful to human health. Potentially carcinogenic bromate is a DBP formed during the ozonation of bromide-containing waters. To mitigate the problem of bromate formation, different physical/chemical or biological reduction methods of bromate have been investigated.
View Article and Find Full Text PDFEnviron Sci Technol
June 2016
University of Texas at Austin, Department of Civil, Architectural and Environmental Engineering, 301 East Dean Keeton Street, Stop C2100, Austin, Texas 78712, United States.
Chloramines are the second most used secondary disinfectant by United States water utilities. However, chloramination may promote nitrifying bacteria. Recently, monochloramine cometabolism by the pure culture ammonia-oxidizing bacteria, Nitrosomonas europaea, was shown to increase monochloramine demand.
View Article and Find Full Text PDFWater Res
January 2015
United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
Water Res
September 2013
University of Texas at Austin, Department of Civil, Architectural and Environmental Engineering, Austin, TX 78712, USA.
Chloramine is widely used in United States drinking water systems as a secondary disinfectant, which may promote the growth of nitrifying bacteria because ammonia is present. At the onset of nitrification, both nitrifying bacteria and their products exert a monochloramine demand, decreasing the residual disinfectant concentration in water distribution systems. This work investigated another potentially significant mechanism for residual disinfectant loss: monochloramine cometabolism by ammonia-oxidizing bacteria (AOB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!