A growing body of theoretical and empirical work has addressed the relationship between hypothalamus-pituitary-adrenal (HPA) function and fitness. For example, the corticosterone (CORT)-fitness and CORT-condition hypotheses predict that baseline and/or stress-induced levels of glucocorticoids should relate to fitness, and recent empirical studies have reported relationships between HPA function and fitness-related sexually selected traits. Here we introduce a framework for evaluating whether such relationships reflect functional relationships or developmental correlations. We then address this framework using data from a free-living population of song sparrows (Melospiza melodia). In two independent studies we have found that song complexity (a sexually selected trait) is correlated with stress reactivity: males with more complex vocal repertoires show reduced CORT response to standardized restraint stress. This pattern likely results from the early life environment concurrently affecting development of both song and the HPA axis. Suppression of CORT by dexamethasone was also correlated to measures of body condition and immune function, and females paired to males with higher stress-induced levels of CORT initiated egg-laying later. Finally, stress reactivity predicted overwinter survival in one year, although not in another. Thus, the relationship between HPA axis function and fitness likely varies temporally and by context. Some fitness-related traits may be functionally related to HPA regulation, but many others may be related through developmental correlation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2013.05.026DOI Listing

Publication Analysis

Top Keywords

hpa axis
12
functional relationships
8
relationships developmental
8
hpa function
8
function fitness
8
stress-induced levels
8
sexually selected
8
stress reactivity
8
hpa
6
axis regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!