Insulin-like growth factor-1 (IGF-1) may play an important role in regulating the expression of distinct tyrosine kinase receptor (Trk) in primary sensory dorsal root ganglion (DRG) neurons. Glutamate (Glu) is the main excitatory neurotransmitter and induces neuronal excitotoxicity for primary sensory neurons. It is not known whether IGF-1 influences expression of TrkA, TrkB, and TrkC in DRG neurons with excitotoxicity induced by Glu. In the present study, primary cultured DRG neurons with Glu-induced excitotoxicity were used to determine the effects of IGF-1 on TrkA, TrkB, and TrkC expression. The results showed that IGF-1 increased the expression of TrkA and TrkB and their mRNAs, but not TrkC and its mRNA, in primary cultured DRG neurons with excitotoxicity induced by Glu. Interestingly, neither the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 nor the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked the effect of IGF-1, but both inhibitors together were effective. IGF-1 may play an important role in regulating different Trk receptor expression in DRG neurons through ERK1/2 and PI3K/Akt signaling pathways. The contribution of distinct Trk receptors might be one of the mechanisms that IGF-1 rescues dying neurons from Glu excitotoxic injury. These data imply that IGF-1 signaling might be a potential target on modifying distinct Trk receptor-mediated biological effects of primary sensory neurons with excitotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2013.05.014 | DOI Listing |
Biomolecules
January 2025
Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China.
The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Anatomy and Histology, School of Medicine, The University of Jordan, 11942, Amman, Jordan.
Background: The search for effective painkillers has led to intensive research, with a particular focus on the transient receptor potential vanilloid-1 (TRPV1) channel as a possible target.
Methods: One promising candidate is ononin, which is investigated for its binding with TRPV1 through a 200-ns molecular dynamic simulation and analysed via root-meansquare deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen-bond interactions, radius of gyration (RadGyr), and MM-PBSA energy calculations. The results were further validated experimentally via calcium imaging studies.
Br J Anaesth
January 2025
Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:
Background: Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure.
View Article and Find Full Text PDFCurr Gene Ther
January 2025
Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.
Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Center for Basic Medical Research, Medical School of Nantong University, Nantong 226001, P. R. China.
Chronic pain is a debilitating disease and remains challenging to treat. Morphine serves as the most commonly used drug for the treatment of pathological pain. However, detrimental side effects (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!