CLN3 disease (Spielmeyer-Vogt-Sjogren-Batten disease) is a severe pediatric neurodegenerative disorder for which there is currently no effective treatment. The disease is characterized by progressive neuronal death, which may be triggered by abnormal intracellular calcium levels leading to neuronal apoptosis. Previously, we demonstrated reversal of the calcium effect in a neuroblastoma cell line using amlodipine and other calcium channel antagonists. In the present studies, we developed a CLN3 siRNA-inhibited primary rat neuron model to further study etoposide-induced calcium changes and apoptosis in CLN3 disease followed by recovery experiments with amlodipine. Our results show that intracellular calcium is significantly elevated in siRNA-inhibited cortical neurons after potassium chloride-induced depolarization. We were also able to show that amlodipine, a predominantly L-type dihydropyrimidine calcium channel antagonist can reverse the aberrant calcium elevations in this model of the disease. We performed an in situ TUNEL assay following etoposide-exposure to siRNA inhibited primary neurons, and apoptotic nuclei were detected providing additional evidence that increased neuronal apoptosis is associated with increased calcium levels. Amlodipine also reduced the absolute number of apoptotic cells in this experimental model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2013.04.113 | DOI Listing |
Sci Rep
January 2025
Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China.
Studies have confirmed that elevated glucose levels could lead to renal fibrosis through the process of ferroptosis. Liraglutide, a human glucagon-like peptide-1 (GLP-1) analogue, is a potential treatment option for diabetes. This study aimed to examine the potential of liraglutide (LIRA) in inhibiting ferroptosis and reducing high glucose-induced renal fibrotic injury in mice, and whether the Fsp1-CoQ10-NAD(P)H signal pathway is a mechanism for this effect.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:
Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) is an extensively used organophosphorus flame retardant (OFR). Previous studies have suggested that it has neurotoxic effects, but the neurotoxicity mechanism is still unclear. Neural stem cells are an important in vitro model for studying the neurotoxicity mechanism of pollutants.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia.
Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK.
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!