The neuronal network is tightly regulated by a large variety of locally connected GABAergic neurons. Neuregulin1 (Nrg1) and its receptor ErbB4 are master regulators in the morphological and functional development of excitatory synapses in GABAergic neurons. We previously showed that the immunoglobulin-like cell adhesion molecule, nectin-like molecule-2 (Necl-2)/CADM1, interacts with the ErbB3 and ErbB4 receptors, and that the interaction of Necl-2 with ErbB3 inhibits the Nrg1-induced ErbB3/ErbB2 signaling in epithelial cells. Here, we examined the role of the interaction of Necl-2 with ErbB4 in GABAergic neurons. Necl-2 was co-expressed with ErbB4 in parvalbumin-positive GABAergic neurons in the mouse hippocampus and co-localized with ErbB4 at excitatory synapses. Necl-2 knockdown enhanced the Nrg1-induced phosphorylation of ErbB4. Moreover, overexpression of PTPN13, which is a tyrosine phosphatase bound to the cytoplasmic tail of Necl-2, suppressed the Nrg1-induced development of excitatory synapses in GABAergic neurons through the inhibition of ErbB4 activity. These results indicate that Necl-2 interacts with ErbB4 and regulates the development of excitatory synapses via the regulation of ErbB4 activity in GABAergic neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcn.2013.06.003 | DOI Listing |
Biomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, 48940, Spain.
Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.
View Article and Find Full Text PDFJ Psychiatr Res
January 2025
Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China. Electronic address:
Background: Previous studies have shown that neurons in the Bed Nucleus of the Stria Terminalis (BNST) respond to stress and play a key role in mental health. However, the cellular bases of BNST in adolescent depression remain elusive.
Methods: Male C57BL/6 mice were randomly assigned to the control (Ctrl) or chronic unpredictable stress (CUS) groups.
Zool Res
January 2025
School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:
Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).
View Article and Find Full Text PDFDev Reprod
December 2024
Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea.
Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!