Concurrent data on antimicrobial use (AMU) and resistance are needed to contain antimicrobial resistance (AMR) in bacteria. The present study examined a herd-level association between AMU and AMR in Escherichia coli (n=394) and Klebsiella species (n=139) isolated from bovine intramammary infections and mastitis cases on 89 dairy farms in 4 regions of Canada [Alberta, Ontario, Québec, and Maritime Provinces (Prince Edward Island, Nova Scotia, and New Brunswick)]. Antimicrobial use data were collected using inventory of empty antimicrobial containers and antimicrobial drug use rate was calculated to quantify herd-level AMU. Minimum inhibitory concentrations (MIC) were determined using Sensititre National Antimicrobial Resistance Monitoring System (NARMS) gram-negative MIC plate (Trek Diagnostic Systems Inc., Cleveland, OH). Isolates were classified as susceptible, intermediate, or resistant. Intermediate and resistant category isolates were combined to form an AMR category, and multivariable logistic regression models were built to determine herd-level odds of AMR to tetracycline, ampicillin, cefoxitin, chloramphenicol, trimethoprim-sulfamethoxazole combination, sulfisoxazole, streptomycin and kanamycin in E. coli isolates. In the case of Klebsiella species isolates, logistic regression models were built for tetracycline and sulfisoxazole; however, no associations between AMU and AMR in Klebsiella species were observed. Ampicillin-intermediate or -resistant E. coli isolates were associated with herds that used intramammarily administered cloxacillin, penicillin-novobiocin combination, and cephapirin used for dry cow therapy [odds ratios (OR)=26, 32, and 189, respectively], and intramammary ceftiofur administered for lactating cow therapy and systemically administered penicillin (OR=162 and 2.7, respectively). Use of systemically administered penicillin on a dairy farm was associated with tetracycline and streptomycin-intermediate or -resistant E. coli isolates (OR=5.6 and 2.8, respectively). Use of cephapirin and cloxacillin administered intramammarily for dry cow therapy was associated with increasing odds of having at least 1 kanamycin-intermediate or -resistant E. coli isolate at a farm (OR=8.7 and 9.3, respectively). Use of systemically administered tetracycline and ceftiofur was associated with cefoxitin-intermediate or -resistant E. coli (OR=0.13 and 0.16, respectively); however, the odds of a dairy herd having at least 1 cefoxitin-intermediate or -resistant E. coli isolate due to systemically administered ceftiofur increased with increasing average herd parity (OR=3.1). Association between herd-level AMU and AMR in bovine mastitis coliforms was observed for certain antimicrobials. Differences in AMR between different barn types and geographical regions were not observed.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2012-5713DOI Listing

Publication Analysis

Top Keywords

-resistant coli
20
systemically administered
16
antimicrobial resistance
12
amu amr
12
klebsiella species
12
coli isolates
12
cow therapy
12
antimicrobial
8
bovine mastitis
8
dairy farms
8

Similar Publications

The study was conducted to detect the occurrence and phenotypic resistance pattern of ESBL-producing Enterobacteriaceae in livestock using docking based analysis to reveal the classes of antibiotics against which ESBL-producers are active. Rectal swabs from healthy cattle (n=100), goats (n=88), pigs (n=66) were collected from backyard farms in Andaman and Nicober island (India). In total, 304 isolates comprising E.

View Article and Find Full Text PDF

Aims: To investigate the effects of Lactococcus lactis subsp. lactis strains LL100933 and LL12007 on the host defense mechanisms of Caenorhabditis elegans against pathogenic infections and stressors.

Methods And Results: C.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs.

View Article and Find Full Text PDF

Recombinant Expression of a New Antimicrobial Peptide Composed of hBD-3 and hBD-4 in Escherichia coli and Investigation of Its Activity Against Multidrug-Resistant Bacteria.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.

Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.

View Article and Find Full Text PDF

High-throughput method characterizes hundreds of previously unknown antibiotic resistance mutations.

Nat Commun

January 2025

Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.

A fundamental obstacle to tackling the antimicrobial resistance crisis is identifying mutations that lead to resistance in a given genomic background and environment. We present a high-throughput technique - Quantitative Mutational Scan sequencing (QMS-seq) - that enables quantitative comparison of which genes are under antibiotic selection and captures how genetic background influences resistance evolution. We compare four E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!