In this study, blueberry pomace was soaked in pH 1, 4, or 7 solution for 10 min followed by boiling hydrolysis. Nine anthocyanins and 11 other phenolic compounds were released after acid hydrolysis. The highest anthocyanin release (4.70 mg/g) was achieved by boiling at pH 1 for 15 min followed by 3.94 mg/g at pH 4 and 3.46 mg/g at pH 7. Phenolics were released more quickly than anthocyanins during boiling. The change of antioxidant activity of the pomace during boiling was correlated with the total phenolic content but not anthocyanin content. The degradation rate of anthocyanins during boiling eventually surpassed the release rate from the pomace. Protocatechuic acid and catechin continuously increased during heating. Dry heat resulted in continuous degradation of anthocyanins and other phenolics in the pomace. The reduction in antioxidant activity of the pomace during dry heating was correlated with both the phenolic and anthocyanin contents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf401983cDOI Listing

Publication Analysis

Top Keywords

degradation anthocyanins
8
anthocyanins phenolics
8
blueberry pomace
8
acid hydrolysis
8
dry heating
8
anthocyanins boiling
8
antioxidant activity
8
activity pomace
8
pomace
6
anthocyanins
5

Similar Publications

PSC1, a basic/helix-loop-helix transcription factor controlling the purplish-red testa trait in peanut.

J Integr Plant Biol

January 2025

College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China.

Seed color is a key agronomic trait in crops such as peanut, where it is a vital indicator of both nutritional and commercial value. In recent years, peanuts with darker seed coats have gained market attention due to their high anthocyanin content. Here, we used bulk segregant analysis to identify the gene associated with the purplish-red coat trait and identified a novel gene encoding a basic/helix-loop-helix transcription factor, PURPLE RED SEED COAT1 (PSC1), which regulates the accumulation of anthocyanins in the seed coat.

View Article and Find Full Text PDF

Microorganism-mediated production of anthocyanins: Current progress and future prospects.

Food Res Int

February 2025

College of Food Science, Shenyang Agricultural of University, No. 120, Dongling Road, Shenhe District, Shenyang 100866, China. Electronic address:

Anthocyanins are a type of water-soluble pigments widely distributed in colorful plants, which have been extensively used in food and cosmetics industry. The current production of anthocyanins heavily depends on extraction from plant materials, which leads to low purity and inconsistency among batches. Compared with conventional extraction, microorganism-mediated production of anthocyanins has advantages such as a short production cycle, high purity, low waste production, low energy requirements, and consistency between different batches.

View Article and Find Full Text PDF

The antioxidant, total phenolic, flavonoid, and anthocyanidin properties of extracts prepared from Cotoneaster frigidus Wall. ex Lindl. "Cornubia" fruit were examined.

View Article and Find Full Text PDF

Fermentation of American elderberry juice yields functional phytochemicals for spray dried protein-polyphenol ingredients.

Food Res Int

February 2025

Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, United States. Electronic address:

American elderberry juice (EBJ) and fermented elderberry juice (EBF) were spray dried using two different carriers: S. cerevisiae yeast (SC), used for juice fermentation and as encapsulating agent, and pea protein, to produce protein-polyphenol ingredients. The spray drying (SD) performance (solids recovery, SR; phenolic retention, PR) and quality attributes (physicochemical and functional properties, phytochemical content and bioaccessibility after in vitro digestion) of eight treatments of spray dried elderberry particles were determined.

View Article and Find Full Text PDF

SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!