Various PEG-Vitamin E conjugates including d-α-tocopheryl poly(ethylene glycol) succinate 1000 (TPGS) have been extensively studied as a nonionic surfactant in various drug delivery systems. However, limited information is available about the structure-activity relationship of PEG-Vitamin E conjugates as a micellar formulation for paclitaxel (PTX). In this study, four PEG-Vitamin E conjugates were developed that vary in the molecular weight of PEG (PEG2K vs PEG5K) and the molar ratio of PEG/Vitamin E (1/1 vs 1/2) in the conjugates. These conjugates were systematically characterized with respect to CMC, PTX loading efficiency, stability, and their efficiency in delivery of PTX to tumor cells in vitro and in vivo. Our data show that PEG5K-conjugates have lower CMC values and are more effective in PTX loading with respect to both loading capacity and stability. The conjugates with two Vitamin E molecules also worked better than the conjugates with one molecule of Vitamin E, particularly for PEG2K-system. Furthermore, all of the PEG-Vitamin E conjugates can induce significant suppression of P-gp function. More importantly, PTX-loaded PEG5K-VE2 resulted in significantly improved tumor growth inhibitory effect in comparison to PTX formulated in PEG2K-VE or PEG2K-VE2, as well as Cremophor EL (Taxol) in a syngeneic mouse model of breast cancer (4T1.2). Our study suggests that PEG5K-Vitmin E2 may hold promise as an improved micellar formulation for in vivo delivery of anticancer agents such as PTX.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778165 | PMC |
http://dx.doi.org/10.1021/mp300729y | DOI Listing |
Sci Technol Adv Mater
July 2019
Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
In an aging society, bone disorders such as osteopenia, osteoporosis, and degenerative arthritis cause serious public health problems. In order to solve these problems, researchers continue to develop therapeutic agents, increase the efficacy of developed therapeutic agents, and reduce side effects. Gold nanoparticles (GNPs) are widely used in tissue engineering applications as biosensors, drug delivery carriers, and bioactive materials.
View Article and Find Full Text PDFAAPS J
November 2014
Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, 639 Salk Hall, Pittsburgh, PA, 15261, USA.
The purpose of this study is to develop an improved drug delivery system for enhanced paclitaxel (PTX) loading capacity and formulation stability based on PEG5K-(vitamin E)2 (PEG5K-VE2) system. PEG5K-(fluorenylmethoxycarbonyl)-(vitamin E)2 (PEG5K-FVE2) was synthesized using lysine as the scaffold. PTX-loaded PEG5K-FVE2 micelles were prepared and characterized.
View Article and Find Full Text PDFMol Pharm
August 2013
Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
Various PEG-Vitamin E conjugates including d-α-tocopheryl poly(ethylene glycol) succinate 1000 (TPGS) have been extensively studied as a nonionic surfactant in various drug delivery systems. However, limited information is available about the structure-activity relationship of PEG-Vitamin E conjugates as a micellar formulation for paclitaxel (PTX). In this study, four PEG-Vitamin E conjugates were developed that vary in the molecular weight of PEG (PEG2K vs PEG5K) and the molar ratio of PEG/Vitamin E (1/1 vs 1/2) in the conjugates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!