From permeation to pore nucleation in smectic stacks.

Langmuir

Molecular Landscapes, Biophotonic Horizons Group, CNRS-UMR 6087, Université du Maine, Le Mans, Sarthe 72000, France.

Published: July 2013

The last stage of the spreading of a stratified droplet in the odd wetting case is the evolution from a trilayer to a monolayer, that is, vanishing of the last bilayer in the stack. We studied it in the case of 8CB smectic liquid crystal on a hydrophilic surface. Receding of the last bilayer is accompanied by formation of pores in it, which appear in the outer part of it. From analysis of real-time experimental observations of this phenomenon, we demonstrate that the dislocation loops which border these pores are not located at the same height in the trilayer stack as the dislocation lines that border the bilayer. Also, careful analysis of our results using a recently developed theoretical approach of smectic liquid nanodrop spreading strongly suggests that pore nucleation is triggered by differences in chemical potential between adjacent layers, which contrasts with the classical scheme where it is attributed to lateral tension along the layers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la4003498DOI Listing

Publication Analysis

Top Keywords

pore nucleation
8
smectic liquid
8
permeation pore
4
nucleation smectic
4
smectic stacks
4
stacks stage
4
stage spreading
4
spreading stratified
4
stratified droplet
4
droplet odd
4

Similar Publications

A Three-Dimensional, Flexible Conductive Network Based on an MXene/Rubber Composite for Lithium Metal Anodes.

ACS Appl Mater Interfaces

December 2024

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China.

Flexibility enhancement is a pressing issue in the current development of advanced lithium-metal battery applications. Many types of organic polymers are inherently flexible, which can form a composite structure enhancing electrode flexibility. However, organic polymers have a negative influence on the plating and stripping of lithium-metal anodes, and the large number of polymers block the pore of the material, reducing the utilization of the active site.

View Article and Find Full Text PDF

The Role of Geometry on the Ease of Solidification Inside and Out of Cylindrical Nanopores.

Langmuir

December 2024

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9.

We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface.

View Article and Find Full Text PDF

Cell-cell fusion is fundamental to developmental processes such as muscle formation, as well as to viral infections that cause pathological syncytia. An essential step in fusion is close membrane apposition, but cell membranes are crowded with proteins, glycoproteins, and glycolipids, all of which must be cleared before a fusion pore can be nucleated. Here, we find that cell surface crowding drastically reduces fusogenicity in multiple systems, independent of the method for driving fusion.

View Article and Find Full Text PDF

Flowing-water remediation simulation experiments of lead-contaminated soil using UCB technology.

Int J Phytoremediation

December 2024

Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing, PR China.

The flowing-water remediation of contaminated soil was investigated. Urease combined with biochar (UCB) technology was used to handle the Pb-contaminated sand column. The results showed that with the continuous increase of pore volume, the concentration of Pb in the leachate undergoes three stages: slow growth, rapid growth, and steady state.

View Article and Find Full Text PDF

The dosages of colloidal silicon seeds in the seed-induced synthesis of TS-1 zeolites were investigated in detail. The characterization results revealed that the colloidal silicon seeds not only reduced the particle sizes but also promoted the incorporation of titanium atoms into the framework of TS-1 zeolites as prepared. SEM images and particle size distribution (PSD) confirmed that the particle sizes of TS-1 zeolite could be effectively reduced to about 150 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!