A polymerase chain reaction (PCR)-mass spectroscopy assay was developed to identify non-O157 Shiga toxin-producing Escherichia coli (STEC) with Plex-ID biosensor system, a platform identifying short PCR amplicons by specific base compositions. This assay simultaneously amplifies five fragments of two housekeeping genes, two subunits of stx2 gene, and four other virulence genes of STEC. A total of 164 well-characterized STEC isolates were examined with the assay to build a DNA base composition database. Another panel of 108 diverse STEC isolates was tested with the established database to evaluate the assay's identification capability. Among the 108 isolates, the assay specificity was 100% for three (stx1, eae, and aggA) out of five tested virulence genes, but 99% for stx2 and 96% for hlyA, respectively. Main stx1/stx2 subtypes and multiple alleles of stx1/stx2 could be differentiated. The assay successfully identified several clinically significant serotypes, including O91:H14, O103:H25, O145:H28/NM, O113:H21, and O104:H4. Meanwhile, it was able to group isolates with different levels of pathogenic potential. The results suggest that this high-throughput method may be useful in clinical and regulatory laboratories for STEC identification, particularly strains with increased pathogenic potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/fpd.2012.1469 | DOI Listing |
Food Sci Nutr
January 2025
Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences Sylhet Agricultural University Sylhet Bangladesh.
The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Field Service - South East and London, UK Health Security Agency, London, UK.
Shiga toxin-producing (STEC) infections are of public health concern as STEC can cause large national foodborne outbreaks of severe gastrointestinal disease, particularly in the young and elderly. In recent years, the implementation of PCR by diagnostic microbiology laboratories has improved the detection of STEC, and there has been an increase in notifications of cases of non-O157 STEC. However, the extent this increase in caseload can be attributed to the improved detection by PCR, or a true increase in non-O157 STEC infections, is unknown.
View Article and Find Full Text PDFFoodborne Pathog Dis
December 2024
Department of Pediatric Nephrology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
Shiga toxin-producing (STEC) refers to a group of bacteria that can cause infections, which are common worldwide and pose a serious public health problem, as they can lead to conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). HUS is a disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Determination of serogroups and toxin profiles of STEC is important for estimating their disease-causing potential and predicting epidemiological changes.
View Article and Find Full Text PDFIran J Vet Res
January 2024
Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
BMC Microbiol
November 2024
Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!