In this Letter, we use a nonequilibrium statistical theory, the stochastic structural stability theory (SSST), to show that an extended version of this theory can make predictions for the formation of nonzonal as well as zonal structures (lattice and stripe patterns) in forced homogeneous turbulence on a barotropic β plane. Comparison of the theory with nonlinear simulations demonstrates that SSST predicts the parameter values for the emergence of coherent structures and their characteristics (scale, amplitude, phase speed) as they emerge and at finite amplitude. It is shown that nonzonal structures (lattice states or zonons) emerge at lower energy input rates of the stirring compared to zonal flows (stripe states) and their emergence affects the dynamics of jet formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.224501 | DOI Listing |
Adv Sci (Weinh)
January 2025
Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China.
Oxygen usually exists in the form of diatomic molecules at ambient conditions. At high pressure, it undergoes a series of phase transitions from diatomic O to O cluster and ultimately dissociates into a polymeric O spiral chain structure. Intriguingly, the commonly found cyclic hexameric molecules in other group VIA elements (e.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universidad Nacional de Tucuman Facultad de Bioquimica Quimica y Farmacia, Chemistry, Av. Kirchner 1900, 4000, San Miguel de Tucumán, ARGENTINA.
(Z)-3-butylamino-4,4,4-trifluoro-1-(2-hydroxyphenyl)but-2-en-1-one (1), a new β-aminoenone, has been investigated in terms of its intra- and intermolecular interactions. Vibrational, electronic and NMR spectroscopies were used for the characterization, while X-ray diffraction methods afforded the determination of the crystal structure. The compound is arranged in the crystal lattice as centre-symmetric H-bonded dimeric aggregates (C2/c monoclinic space group).
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.
View Article and Find Full Text PDFNano Lett
January 2025
School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand.
Understanding metastable structural transitions under beam irradiation is essential for the phase engineering of nanomaterials. However, in situ studies of beam-induced structural transitions remain challenging. This work uses an electron beam in aberration-corrected high-angle annular dark-field scanning transmission electron microscopy to irradiate Au nanocrystals at room temperature.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece.
The current research aims to analyze the shape and structural features of the eggs of the lepidoptera species sp. (Lepidoptera, Nympalidae) and develop design solutions through the implementation of a novel strategy of biomimetic design. Scanning electron microscopy (SEM) analysis of the chorion reveals a medial zone that forms an arachnoid grid resembling a ribbed dome with convex longitudinal ribs and concave transverse ring members.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!