Improved estimation of anomalous diffusion exponents in single-particle tracking experiments.

Phys Rev E Stat Nonlin Soft Matter Phys

Physics Department & Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel.

Published: May 2013

The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.87.052713DOI Listing

Publication Analysis

Top Keywords

estimation anomalous
8
anomalous diffusion
8
single-particle tracking
8
tracking experiments
8
square displacement
8
average exponent
8
improved estimation
4
diffusion exponents
4
exponents single-particle
4
experiments square
4

Similar Publications

The Voyager 2 flyby of Uranus in 1986 revealed an unusually oblique and off-centred magnetic field. This single in situ measurement has been the basis of our interpretation of Uranus's magnetosphere as the canonical extreme magnetosphere of the solar system; with inexplicably intense electron radiation belts and a severely plasma-depleted magnetosphere. However, the role of external forcing by the solar wind has rarely been considered in explaining these observations.

View Article and Find Full Text PDF

Evaluation of charge summing correction in CdTe-based photon-counting detectors for breast CT: performance metrics and image quality.

J Med Imaging (Bellingham)

January 2025

U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.

Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).

Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.

View Article and Find Full Text PDF

Anomalous entropy-driven kinetics of dislocation nucleation.

Nat Commun

January 2025

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.

The kinetics of dislocation reactions, such as dislocation multiplication, controls the plastic deformation in crystals beyond their elastic limit, therefore critical mechanisms in a number of applications in materials science. We present a series of large-scale molecular dynamics simulations that shows that one such type of reactions, the nucleation of dislocation at free surfaces, exhibit unconventional kinetics, including unexpectedly large nucleation rates under compression, very strong entropic stabilization under tension, as well as strong non-Arrhenius behavior. These unusual kinetics are quantitatively rationalized using a variational transition state theory approach coupled with an efficient numerical scheme for the estimation of vibrational entropy changes.

View Article and Find Full Text PDF

Continuous Near-Bed Movements of Microplastics in Open Channel Flows: Statistical Analysis.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

The ubiquitous distribution of microplastics (MPs) in aquatic environments is linked to their transport in rivers and streams. However, the specific mechanism of bedload microplastic (MP) transport, notably their stochastic behaviors, remains an underexplored area. To investigate this, particle tracking velocimetry was employed to examine the continuous near-bed movements of four types of MPs under nine setups with different experimental conditions in a laboratory flume, with an emphasis on their streamwise transport.

View Article and Find Full Text PDF

West Nile virus (WNV) is one of the most threatening mosquito-borne pathogens in Italy where hundreds of human cases were recorded during the last decade. Here, we estimated the WNV incidence in the avian population in the Emilia-Romagna region through a modelling framework which enabled us to eventually assess the fraction of birds that present anti-WNV antibodies at the end of each epidemiological season. We fitted an SIR model to ornithological data, consisting of 18,989 specimens belonging to Corvidae species collected between 2013 and 2022: every year from May to November birds are captured or shot and tested for WNV genome presence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!