A size-exclusion LC method was validated for the determination of interferon-a2a (rhlFN-alpha2a) in pharmaceutical formulations without interference from human serum albumin. Chromatographic separation was performed on a BioSep-SEC-S 2000 column (300 x 7.8 mm id). The mobile phase consisted of 0.001 M monobasic potassium phosphate, 0.008 M sodium phosphate dibasic; 0.2 M sodium chloride buffer, pH 7.4, run at a gradient flow rate and using photodiode array detection at 214 nm, was used. Chromatographic separation was achieved with a retention time of 17.2 min, and the analysis was linear over the concentration range of 1.98 to 198 microg/mL (r2 = 0.9996). The accuracy was 101.39%, with bias lower than 1.67%. The LOD and LOQ were 0.87 and 1.98 microg/mL, respectively. Moreover, method validation demonstrated acceptable results for precision and robustness. The method was applied to the assessment of rhlFN-alpha2a and related proteins in biopharmaceutical dosage forms, and the content/potencies were correlated to those given by a validated RP-LC method and an in vitro bioassay. It was concluded that use of the methods in conjunction allows a great improvement in monitoring stability and QC, thereby ensuring the therapeutic efficacy of the biotechnology-derived medicine.

Download full-text PDF

Source
http://dx.doi.org/10.5740/jaoacint.11-493DOI Listing

Publication Analysis

Top Keywords

size-exclusion method
8
pharmaceutical formulations
8
chromatographic separation
8
198 microg/ml
8
method
5
development validation
4
validation stability-indicating
4
stability-indicating size-indicating
4
size-indicating size-exclusion
4
method determination
4

Similar Publications

Background: The biopharmaceutical industry is increasingly interested in the analysis of trace metals due to their significant impact on product quality and drug safety. Certain metals can potentially accelerate the formation of degradants or aggregates in biotherapeutic proteins, leading to drug product quality concerns. A better understanding of metal-mAb interactions would aid in the development of purification processes and formulations, thereby ensuring better drug quality and safety.

View Article and Find Full Text PDF

Revealing New Analytical Insights into RNA Complexes: Divalent siRNA Characterization by Liquid Chromatography and Mass Spectrometry.

Anal Chem

January 2025

Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States.

Accurate characterization of therapeutic RNA, including purity and identity, is critical in drug discovery and development. Here, we utilize denaturing and non-denaturing chromatography for the analysis of ∼25 kDa divalent small interfering RNA (di-siRNA), which comprises a complex 2:1 triplex structure. Ion pair reversed-phase (IPRP) liquid chromatography (LC) experiments with UV absorbance and mass spectrometry (MS) showcase a single denaturing LC method for identity confirmation, impurity profiling, and sequencing with automated MS data interpretation.

View Article and Find Full Text PDF

Background: The search for early and minimally invasive diagnostic approaches to pancreatic cancer (PC) remains an important issue. One of the most promising directions is to find a sensitive key in the metabolic changes during widespread causes of PC, i.e.

View Article and Find Full Text PDF

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

Preparation, Modification, Quantitation, and Dentin Biomodification Activity of Selectively Enriched Proanthocyanidins.

J Nat Prod

January 2025

Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States.

To date, quantitative analysis of proanthocyanidin (PAC) containing materials including plant extracts and fractions depends on colorimetric assays or phloroglucinolysis/thiolysis combined with UV-HPLC analysis. Such assays are of limited accuracy, particularly lack specificity, require extensive sample preparation and degradation, and need appropriate physical reference standards. To address this analytical challenge and toward our broader goal of developing new plant-sourced biomaterials that chemically and mechanically modulate the properties of dental tissue for clinical interventions, we have characterized 12 different PAC DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!