Present study was focused on evaluation of a semiquinone glucoside derivative (SQGD) isolated from radioresistant bacterium Bacillus sp. INM-1 for its ability against γ radiation induced oxidative stress in irradiated mice. Animals were divided into four group, i.e., (i) untreated control mice; (ii) SQGD treated (50 mg/kg b. wt. i.p.) mice; (iii) irradiated (10 Gy) mice; and (iv) irradiated mice which were pre-treated (-2 h) with SQGD (50 mg/kg b. wt. i.p.). Following treatment, liver homogenates of the treated mice were subjected to endogenous antioxidant enzymes estimation. Result indicated that SQGD pre-treatment, significantly (P < 0.05) induced superoxide dismutase (SOD) (19.84 ± 2.18% at 72 h), catalase (CAT) (26.47 ± 3.11% at 12 h), glutathione (33.81 ± 1.99% at 24 h), and glutathione-S-transferase (24.40 ± 2.65% at 6 h) activities in the liver of mice as compared with untreated control. Significant (P < 0.05) induction in SOD (50.04 ± 5.59% at 12 h), CAT (62.22 ± 7.50 at 72 h), glutathione (42.92 ± 2.28% at 24 h), and glutathione-S-transferase (46.65 ± 3.25 at 12 h) was observed in irradiated mice which were pre-treated with SQGD compared with only irradiated mice. Further, significant induction in ABTS(+) radicals (directly proportional to decrease mM Trolox equivalent) was observed in liver homogenate of H2 O2 treated mice which were found to be significantly inhibited in H2 O2 treated mice pre-treated with SQGD. Thus, it can be concluded that SQGD treatment neutralizes oxidative stress caused by irradiation not only by enhancing endogenous antioxidant enzymes but also by improving total antioxidant status of cellular system and thus cumulative effect of the phenomenon may contributes to radioprotection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.21877DOI Listing

Publication Analysis

Top Keywords

irradiated mice
20
mice pre-treated
12
pre-treated sqgd
12
treated mice
12
mice
11
bacillus inm-1
8
oxidative stress
8
untreated control
8
endogenous antioxidant
8
antioxidant enzymes
8

Similar Publications

Anti-Inflammatory and Anticancer Effects of Kaurenoic Acid in Overcoming Radioresistance in Breast Cancer Radiotherapy.

Nutrients

December 2024

Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.

: Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in mediating anti-inflammatory and anticancer effects in the tumor microenvironment. Kaurenoic acid (KA), a diterpene compound isolated from (L.) Pruski, has been demonstrated to exert anti-inflammatory, anticancer, and antihuman immunodeficiency virus effects.

View Article and Find Full Text PDF

Inflammation is a natural body's defense mechanism against harmful stimuli such as pathogens, chemicals, or irradiation. But when the inflammatory response becomes permanent, it can lead to serious health problems. In the present study, the antioxidant and anti-inflammatory potentials of the methanolic extract (EMME), as well as its isolated fractions (FA-FJ) and compounds (-), were evaluated by using in vitro and cellular models.

View Article and Find Full Text PDF

Despite treatment, prostate cancer commonly progresses into castration-resistant prostate cancer (CRPC), which remains largely incurable, requiring the development of new interventions. Darolutamide is an orally administered second-generation androgen receptor inhibitor indicated for patients with non-metastatic CRPC or metastatic hormone-sensitive prostate cancer. Here, we evaluated the effect of androgen receptor (AR) inhibition by darolutamide in combination with DNA double-strand-break-inducing targeted radium-223 alpha therapy in vitro and in an intratibial LNCaP xenograft model mimicking prostate cancer metastasized to bone.

View Article and Find Full Text PDF

Over the last decades, significant progress has been made in studying agonistic and antagonistic hematopoietic peptides. The main disadvantage of this class of peptides is their low stability with noninvasive administration methods, which limits the widespread use of hematopoiesis-regulated peptide drugs in medical practice. The aim of this work is to study novel peptidomimetics with hematopoietic activity sustained in invasive and oral administration.

View Article and Find Full Text PDF

Image-guided mouse irradiation is essential to understand interventions involving radiation prior to human studies. Our objective is to employ Swin UNEt TRansformers (Swin UNETR) to segment native micro-CT and contrast-enhanced micro-CT scans and benchmark the results against 3D no-new-Net (nnU-Net). Swin UNETR reformulates mouse organ segmentation as a sequence-to-sequence prediction task using a hierarchical Swin Transformer encoder to extract features at five resolution levels, and it connects to a Fully Convolutional Neural Network (FCNN)-based decoder via skip connections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!