An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa.

Environ Microbiol Rep

Metaux et microorganismes: Chimie, Biologie et Applications. FRE 3211, CNRS-Université de Strasbourg, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France. Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand.

Published: June 2010

Pyoverdine (PVDI) is a siderophore produced by Pseudomonas aeruginosa in order to obtain iron. This molecule is composed of a fluorescent chromophore linked to an octapeptide. Following secretion from the bacteria, PVDI chelates iron ions and the resulting Fe-PVDI complexes are taken up by the bacteria through a cell surface receptor protein. The iron is released in the periplasm and the resulting PVDI is recycled, being secreted out of the bacteria by a previously unknown mechanism. Three genes with the potential to encode an efflux system are adjacent to, and coregulated with, genes required for PVDI-mediated iron transport. Mutation of genes encoding this efflux pump (named PvdRT-OpmQ) prevented recycling of PVDI from the periplasm into the extracellular medium. Fluorescence microscopy showed that in the mutant bacteria PVDI accumulated in the periplasm. Gallium (Ga(3+) ), a metal that cannot be removed from PVDI by reduction, is taken up by P. aeruginosa when chelated by PVDI. Recycling did not occur after transport of PVDI-Ga(3+) and fluorescence accumulated in the periplasm even when the PvdRT-OpmQ efflux pump was functional. Cellular fractionation showed that PVDI-synthesizing bacteria lacking PvdRT-OpmQ secreted PVDI but had an approximately 20-fold increase in the amount of PVD present in the periplasm, consistent with an inability to recycle PVDI. Collectively, these data show that PvdRT-OpmQ is involved in recycling of PVDI from the periplasm to the extracellular medium and recycling requires release of the metal ion from PVDI.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1758-2229.2009.00115.xDOI Listing

Publication Analysis

Top Keywords

efflux pump
12
pvdi
11
pseudomonas aeruginosa
8
bacteria pvdi
8
recycling pvdi
8
pvdi periplasm
8
periplasm extracellular
8
extracellular medium
8
accumulated periplasm
8
periplasm
6

Similar Publications

Introduction The antimicrobial resistance of is variable and is influenced by both geographic location and regional antibiotic use. The overuse of antibiotics, especially in hospitalised patients, suppresses the growth and persistence of drug-resistant bacteria. This study aimed to detect the prevalence of carbapenem-resistant and the genes responsible for the resistance.

View Article and Find Full Text PDF

The increasing antibiotic resistance in Pseudomonas aeruginosa, responsible for both community-acquired and hospital-acquired infections, is of global significance. The primary mechanisms contributing to resistance development in P.aeruginosa include the increased activity of efflux pumps, decreased permeability of outer membrane porins and the production of carbapenemases.

View Article and Find Full Text PDF

Bacterial resistance is a major public health challenge. In Gram-negative bacteria, the synergy between multidrug efflux pumps and outer membrane impermeability determines the intracellular concentration of antibiotics. Consequently, it also dictates antibiotic activity on their respective targets.

View Article and Find Full Text PDF

Overcoming Nanosilver Resistance: Resensitizing Bacteria and Targeting Evolutionary Mechanisms.

ACS Nano

December 2024

School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.

The rapid spread of antimicrobial resistance poses a critical threat to global health and the environment. Antimicrobial nanomaterials, including silver nanoparticles (AgNPs), are being explored as innovative solutions; however, the emergence of nanoresistance challenges their effectiveness. Understanding resistance mechanisms is essential for developing antievolutionary strategies.

View Article and Find Full Text PDF

Introduction: The persistence of in the contaminated environment is sustained by tolerance to biocides and ability to growth as biofilm. The aim of the study was to analyze the susceptibility of biofilms to chlorhexidine (CHX) and benzalkonium (BZK) biocides and the ability of natural monomeric stilbenoid resveratrol (RV) to modulate the phenomenon.

Methods: Biofilm formation and preformed biofilm were tested by Crystal violet and tetrazolium salt reduction assay, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!