The anaerobic oxidation of methane (AOM) by methanotrophic archaea and sulfate-reducing bacteria is the major sink of methane formed in marine sediments. The study of AOM as well as of methanogenesis in different habitats is essentially connected with the in situ analysis of stable isotope ((13) C/(12) C, D/H) signatures (δ-values). For their kinetic interpretation, experimental (cultivation-based) isotope fractionation factors (α-values) are richly available in the case of methanogenesis, but are scarce in the case of AOM. Here we used batch enrichment cultures with high AOM activity and without background methanogenesis from detrital remnants to determine (13) C/(12) C and D/H fractionation factors. The enrichment cultures which originated from three marine habitats (Hydrate Ridge, NE Pacific; Amon Mud Volcano, Mediterranean Sea; NW shelf, Black Sea) were dominated by archaeal phylotypes of anaerobic methanotrophs (ANME-2 clade). Isotope fractionation factors calculated from the isotope signatures as a function of the residual proportion of methane were 1.012-1.039 for (13) CH4 /(12) CH4 and 1.109-1.315 for CDH3 /CH4 . The present values from in vitro experiments were significantly higher than values previously estimated from isotope signature distributions in marine sediment porewater, in agreement with the overlap of other processes with AOM in the natural habitat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1758-2229.2009.00074.x | DOI Listing |
Mol Pharmacol
September 2024
Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis (M.L.); Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida (M.H., A.V., R.S., T.P.B.); University of Florida Genetics Institute, Gainesville, Florida (T.P.B.); Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, Texas, (D.H.S., V.A.N.); Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri (J.K.W.); Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX (W.X., L.Z.); and Center for Clinical Pharmacology, St Louis College of Pharmacy, University of Health Sciences and Pharmacy, St. Louis MO (C.B.)
Autophagy is an essential self-degradative and recycling mechanism that maintains cellular homeostasis. Estrogen receptor-related orphan receptors (ERRs) are fundamental in regulating cardiac metabolism and function. Previously, we showed that ERR agonists improve cardiac function in models of heart failure and induce autophagy.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2024
Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Surat-395 007, Gujarat, India.
Self-assembly of ethylene oxide (EO)-propylene oxide (PO)-based star-shaped block copolymers (BCPs) in the presence of different kinds of additives is investigated in an aqueous solution environment. Commercially available four-armed BCPs, namely Tetronics® (normal: T904 with EO as the terminal end block; and reverse: T90R4 with PO as the terminal end block), each with 40%EO, are used. The effect of various additives such as electrolytes (NaCl and NaSO), nonelectrolyte polyols (glucose and sorbitol), and ionic surfactants ( anionic-sodium dodecyl sulfate (SDS), cationic-dodecyltrimethylammonium bromide (DTAB) and zwitterionic dodecyldimethylammonium propane sulfonate (CPS)) on these BCPs is examined to observe their influence on micellization behaviour.
View Article and Find Full Text PDFISME J
November 2023
Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA.
Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
August 2021
German Federal Institute for Risk Assessment (BfR), Department Safety in the Food Chain, Berlin, Germany.
Proc Natl Acad Sci U S A
September 2016
Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR 97239.
Observations of atmospheric methane (CH4) since the late 1970s and measurements of CH4 trapped in ice and snow reveal a meteoric rise in concentration during much of the twentieth century. Since 1750, levels of atmospheric CH4 have more than doubled to current globally averaged concentration near 1,800 ppb. During the late 1980s and 1990s, the CH4 growth rate slowed substantially and was near or at zero between 1999 and 2006.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!