A survey of TonB-dependent receptors in fluorescent pseudomonads.

Environ Microbiol Rep

Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute for Biotechnology (VIB), Vrije Universiteit Brussel, Building E, Pleinlaan 2, 1050 Brussels, Belgium. Université de Rouen, Laboratoire M2C, UMR CNRS 6143, groupe microbiologie, Bâtiment IRESE B, UFR des Sciences, 76821 Mont Saint Aignan, France.

Published: August 2009

For bacteria with an aerobic lifestyle, iron is in the oxidized Fe(3+) form, hence poorly soluble. The solution is the synthesis and excretion of siderophores with a high affinity for iron. These ferrisiderophores are recognized by TonB-dependent outer membrane receptors in Gram-negative bacteria. Haem is also a source of iron and is captured via TonB-dependent receptors as well. In many cases bacterial genomes encode genes for receptors for siderophores produced by other microorganisms (xenosiderophores). Pseudomonads are known for their high adaptive capacity and it is therefore not surprising to find a relatively large number of genes encoding these receptors. In this study we analysed the genomes of three fluorescent pseudomonads available in the Pseudomonas genome database (http://www.pseudomonas.com; P. aeruginosa, P. putida, P. syringae) in order to extract the genes coding for TonB-dependent receptors. As expected we observed differences between species for the number of receptors. We also report differences within species, suggesting the acquisition of some genes via horizontal gene transfer, including those coding for the ferripyoverdine receptors. We also report cases where duplications of receptor genes are observed and the presence of 'receptor islands'. Our study strongly supports the notion of 'core' and 'accessory' TonB-dependent receptors within each species, with the ferripyoverdine receptors belonging to the last category.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1758-2229.2009.00041.xDOI Listing

Publication Analysis

Top Keywords

tonb-dependent receptors
16
receptors
10
fluorescent pseudomonads
8
differences species
8
receptors report
8
ferripyoverdine receptors
8
genes
5
survey tonb-dependent
4
receptors fluorescent
4
pseudomonads bacteria
4

Similar Publications

is a significant public health concern due to the emergence of antibiotic-resistant strains. Cefiderocol (FDC), a novel siderophore cephalosporin, has shown promise as a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of -acquired FDC-resistant strains highlights the need for advanced tools to identify resistance-associated genomic mutations and address the challenges of FDC susceptibility testing.

View Article and Find Full Text PDF

Defining the role of Hmu and Hus systems in Porphyromonas gingivalis heme and iron homeostasis and virulence.

Sci Rep

December 2024

Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.

Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.

View Article and Find Full Text PDF

Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut.

View Article and Find Full Text PDF

Bacterial TonB-dependent transducers interact with the anti-σ factor in absence of the inducing signal protecting it from proteolysis.

PLoS Biol

December 2024

Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain.

Competitive bacteria like the human pathogen Pseudomonas aeruginosa can acquire iron from different iron carriers, which are usually internalized via outer membrane TonB-dependent receptors (TBDRs). Production of TBDRs is promoted by the presence of the substrate. This regulation often entails a signal transfer pathway known as cell-surface signaling (CSS) that involves the TBDR itself that also functions as transducer (and is thus referred to as TBDT), a cytoplasmic membrane-bound anti-σ factor, and an extracytoplasmic function σ (σECF) factor.

View Article and Find Full Text PDF
Article Synopsis
  • - Cefiderocol is a new antibiotic effective against multidrug-resistant pathogens, showing potential against carbapenem-resistant Pseudomonas aeruginosa (Cr-Pa) infections based on a study of 108 isolates.
  • - Out of these isolates, nine displayed resistance with specific mutations linked to iron uptake systems and other resistance-related genes, while no correlation was found between carbapenemases and cefiderocol resistance.
  • - The study indicates that while cefiderocol remains a viable treatment option, ongoing research is needed to understand the evolving resistance mechanisms and enhance strategies for managing antimicrobial resistance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!