An extracellular, 700,000-Mr multiprotein complex that catalyzed the hydrolysis of crystalline cellulose (Avicel) was isolated from cultures of Clostridium sp. strain C7, a mesophile from freshwater sediment. In addition to cellulose (Avicel, ball-milled filter paper), the multiprotein complex hydrolyzed carboxymethylcellulose, cellodextrins, xylan, and xylooligosaccharides. Hydrolysis of cellulose or cellotetraose by the complex yielded cellobiose as the main product. Cellopentaose or cellohexaose was hydrolyzed by the complex to cellotriose or cellotetraose, respectively, in addition to cellobiose. Xylobiose was the main product of xylan hydrolysis, and xylobiose and xylotriose were the major products of xylooligosaccharide hydrolysis. Activity (Avicelase) resulting in hydrolysis of crystalline cellulose required Ca2+ and a reducing agent. The multiprotein complex had temperature optima for Avicelase, carboxymethylcellulase, and xylanase activities at 45, 55, and 55 degrees C, respectively, and pH optima at 5.6 to 5.8, 5.5, and 6.55, respectively. Electron microscopy of the 700,000-Mr enzyme complex revealed particles relatively uniform in size (12 to 15 nm wide) and apparently composed of subunit structures. Elution of strain C7 concentrated culture fluid from Sephacryl S-300 columns yielded an A280 peak in the 130,000-Mr region. Pooled fractions from the 130,000-Mr peak had carboxymethylcellulase activity but lacked Avicelase activity. Except for the inability to hydrolyze cellulose, the 130,000-Mr preparation had a substrate specificity identical to that of the 700,000-Mr protein complex. A comparison by immunoblotting techniques of proteins in the 130,000- and 700,000-Mr preparations, indicated that the two enzyme preparations had cross-reacting antigenic determinants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC213246 | PMC |
http://dx.doi.org/10.1128/jb.172.8.4231-4237.1990 | DOI Listing |
J Hepatol
January 2025
Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Lead contact. Electronic address:
Background & Aims: Hepatic ischemia‒reperfusion injury (HIRI) is a critical complication of liver surgery and transplantation that contributes significantly to severe organ failure. GRINA, a calcium-regulating endoplasmic reticulum (ER) protein, plays an essential role in controlling the unfolded protein response; however, its role in HIRI remains unclear. The aim of this study was to investigate the function of GRINA in HIRI and explore its potential as a therapeutic target.
View Article and Find Full Text PDFCells
January 2025
Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
Ubiquitylation is a post-translational modification that modulates protein function and stability. It is orchestrated by the concerted action of three types of enzymes, with substrate specificity governed by ubiquitin ligases (E3s), which may exist as single proteins or as part of multi-protein complexes. Although Cullin (CUL) proteins lack intrinsic enzymatic activity, they participate in the formation of active ubiquitin ligase complexes, known as Cullin-Ring ubiquitin Ligases (CRLs), through their association with ROC1 or ROC2, along with substrate adaptor and receptor proteins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Microbiology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
The inflammasome is a cytoplasmic multiprotein complex that induces the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) or pyroptosis by activating caspases, which play critical roles in regulating inflammation, cell death, and various cellular processes. Multiple studies have shown that the inflammasome is a key regulator of the host defence response against pathogen infections. During the process of pathogenic microbe invasion into host cells, the host's innate immune system recognizes these microbes by activating inflammasomes, triggering inflammatory responses to clear the microbes and initiate immune responses.
View Article and Find Full Text PDFBiophys Rev
December 2024
Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK.
Calcium binding to troponin triggers the contraction of skeletal and heart muscle through structural changes in the thin filaments that allow myosin motors from the thick filaments to bind to actin and drive filament sliding. Here, we review studies in which those changes were determined in demembranated fibres of skeletal and heart muscle using fluorescence for in situ structure (FISS), which determines domain orientations using polarised fluorescence from bifunctional rhodamine attached to cysteine pairs in the target domain. We describe the changes in the orientations of the N-terminal lobe of troponin C (TnC) and the troponin IT arm in skeletal and cardiac muscle cells associated with contraction and compare the orientations with those determined in isolated cardiac thin filaments by cryo-electron microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!