Perfluorinated chemicals (PFCs) are a group of compounds with varying carbon chains and functional groups. Currently, available toxicity studies of PFCs are limited mainly to dominant species. While many other PFCs are detected in the environment and biota, it is important to extend toxicity studies to different types of PFCs to better assess their environmental and ecological impacts. In the present study, the environmental toxicity of perfluorooctanesulfonate, perfluoroocanoic acid, perfluorononanoic acid, and perfluorodecanoic acid were evaluated in green mussel, Perna viridis, using a new and improved integrated biomarker approach, the enhanced integrated biomarker response (EIBR) system, with biomarkers from multiple biological levels. Structure-activity relationships were also examined based on the biomarker results. The results show that the 4 PFCs have distinct toxicity patterns and the integrative toxicity, in terms of the EIBR value, is governed by the fluorinated chain length. In addition to commonly recognized chain length and functional group effects, several structural factors are also involved in the toxic actions of PFCs, including hydrophobicity and molecular size, and so on. By integrating biomarkers from multiple biological levels with weight-of-evidence, the proposed EIBR provides a new perspective and an ecologically relevant assessment of the environmental toxicity of the pollutants. The results of EIBR and structure-activity analysis are also useful to predict toxic behaviors of other PFCs in the group and facilitate the decision-making process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.2306 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
January 2025
Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk.
Objective: We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research.
J Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFEnviron Res
January 2025
Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Biofouling is a common phenomenon caused by waterborne organisms such as bacteria, diatoms, mussels, barnacles, algae, etc., accumulating on the surfaces of engineering structures submerged under water. This leads to corrosion of such surfaces and decreases their moving efficiency.
View Article and Find Full Text PDFEnviron Res
January 2025
Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden.
As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!