Bubble-free electrode actuation for micro-preparative scale electrophoresis of RNA.

Lab Chip

Leiden Academic Centre for Drug Research (LACDR), Division of Analytical Biosciences, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.

Published: August 2013

AI Article Synopsis

  • A microfluidic chip is designed for efficient lysis and purification of RNA from bacteria using joule-heating and gel electrophoresis.
  • Silver chloride electrodes help prevent bubble formation during electrophoresis and maintain solution clarity by using saturated chloride for the anode.
  • The technology was validated by successfully extracting and amplifying transfer-messenger RNA from E. coli, paving the way for advanced, miniaturized diagnostic tools.

Article Abstract

A microfluidic chip is presented for lysis and one-step RNA purification from bacteria. Bacteria are lysed by joule-heating followed by a gel electrophoresis step for clean-up and subsequent elution of small RNA. Bubble formation during electrophoresis at constant current is suppressed through the use of a silver chloride cathode and a silver anode. To prevent silver chloride sediment in the bulk solution, the anode was immersed in a saturated chloride solution. Salt bridges in the form of polyacrylamide gels are used that could be precisely patterned with the help of phaseguides. Bubble-free actuation could be performed for more than 20 min under a constant current. For longer actuation times, cathodic silver-chloride became depleted and a silver-chloride sediment formed in the anodic microchamber at increasing distance from the anode with time. The chip functioning was verified by extraction of transfer-messenger RNA from Escherichia coli and subsequent amplification using reverse transcription real-time PCR. Incorporation of salt bridges enables effective bubble free actuation of Ag/AgCl electrodes in a microfluidic chip. This opens up new possibilities in a surge towards fully integrated diagnostic cartridges that are miniaturized and disposable.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3lc50332aDOI Listing

Publication Analysis

Top Keywords

microfluidic chip
8
constant current
8
silver chloride
8
salt bridges
8
bubble-free electrode
4
actuation
4
electrode actuation
4
actuation micro-preparative
4
micro-preparative scale
4
scale electrophoresis
4

Similar Publications

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Plasmids play a vital role in synthetic biology by enabling the introduction and expression of foreign genes in various organisms, thereby facilitating the construction of biological circuits and pathways within and between cell populations. For many applications, maintaining functional plasmids without antibiotic selection is critical. This study introduces an open-hardware-based microfluidic workflow for analyzing plasmid retention by culturing single cells in gel microdroplets and quantifying microcolonies using fluorescence microscopy.

View Article and Find Full Text PDF

pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of dementia worldwide, and the development of early screening methods can address its significant health and social consequences. In this paper, we present a rotary-valve assisted paper-based immunoassay device (RAPID) for early screening of AD, featuring a highly integrated on-chip rotary micro-valve that enables fully automated and efficient detection of the AD biomarker (amyloid beta 42, Aβ42) in artificial plasma. The microfluidic paper-based analytical device (μPAD) of the RAPID pre-stores the required assay reagents on a μPAD and automatically controls the liquid flow through a single valve.

View Article and Find Full Text PDF

A Microflow Chip Technique for Monitoring Platelets in Late Pregnancy: A Possible Risk Factor for Thrombosis.

J Blood Med

January 2025

Department of Blood Transfusion of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, People's Republic of China.

Purpose: To study the platelet adhesion and aggregation behaviour of late pregnancy women under arterial shear rate using microfluidic chip technology and evaluate the risk of thrombosis in late pregnancy.

Methods: We included pregnant women who were registered in the obstetrics department of our hospital between January 2021 and October 2022 and underwent regular prenatal examinations. Blood samples were collected at 32-35 weeks of gestation for routine blood tests and progesterone, oestradiol, and platelet aggregation function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!