A microfluidic chip is presented for lysis and one-step RNA purification from bacteria. Bacteria are lysed by joule-heating followed by a gel electrophoresis step for clean-up and subsequent elution of small RNA. Bubble formation during electrophoresis at constant current is suppressed through the use of a silver chloride cathode and a silver anode. To prevent silver chloride sediment in the bulk solution, the anode was immersed in a saturated chloride solution. Salt bridges in the form of polyacrylamide gels are used that could be precisely patterned with the help of phaseguides. Bubble-free actuation could be performed for more than 20 min under a constant current. For longer actuation times, cathodic silver-chloride became depleted and a silver-chloride sediment formed in the anodic microchamber at increasing distance from the anode with time. The chip functioning was verified by extraction of transfer-messenger RNA from Escherichia coli and subsequent amplification using reverse transcription real-time PCR. Incorporation of salt bridges enables effective bubble free actuation of Ag/AgCl electrodes in a microfluidic chip. This opens up new possibilities in a surge towards fully integrated diagnostic cartridges that are miniaturized and disposable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3lc50332a | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile;
Plasmids play a vital role in synthetic biology by enabling the introduction and expression of foreign genes in various organisms, thereby facilitating the construction of biological circuits and pathways within and between cell populations. For many applications, maintaining functional plasmids without antibiotic selection is critical. This study introduces an open-hardware-based microfluidic workflow for analyzing plasmid retention by culturing single cells in gel microdroplets and quantifying microcolonies using fluorescence microscopy.
View Article and Find Full Text PDFLab Chip
January 2025
CNRS UMR 7010, Institut de Physique de Nice (INPHYNI), Université Côte d'Azur, 06108 Nice, France.
pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values.
View Article and Find Full Text PDFLab Chip
January 2025
School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
Alzheimer's disease (AD) is the leading cause of dementia worldwide, and the development of early screening methods can address its significant health and social consequences. In this paper, we present a rotary-valve assisted paper-based immunoassay device (RAPID) for early screening of AD, featuring a highly integrated on-chip rotary micro-valve that enables fully automated and efficient detection of the AD biomarker (amyloid beta 42, Aβ42) in artificial plasma. The microfluidic paper-based analytical device (μPAD) of the RAPID pre-stores the required assay reagents on a μPAD and automatically controls the liquid flow through a single valve.
View Article and Find Full Text PDFJ Blood Med
January 2025
Department of Blood Transfusion of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, People's Republic of China.
Purpose: To study the platelet adhesion and aggregation behaviour of late pregnancy women under arterial shear rate using microfluidic chip technology and evaluate the risk of thrombosis in late pregnancy.
Methods: We included pregnant women who were registered in the obstetrics department of our hospital between January 2021 and October 2022 and underwent regular prenatal examinations. Blood samples were collected at 32-35 weeks of gestation for routine blood tests and progesterone, oestradiol, and platelet aggregation function.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!