Once biologically available aluminum bypasses gastrointestinal and blood-brain barriers, this environmentally-abundant neurotoxin has an exceedingly high affinity for the large pyramidal neurons of the human brain hippocampus. This same anatomical region of the brain is also targeted by the earliest evidence of Alzheimer's disease (AD) neuropathology. The mechanism for the selective targeting and transport of aluminum into the hippocampus of the human brain is not well understood. In an effort to improve our understanding of a pathological aluminum entry system into the brain, this study examined the aluminum content of 8 arteries that supply blood to the hippocampus, including the aorta and several cerebral arteries. In contrast to age-matched controls, in AD patients we found a gradient of increasing aluminum concentration from the aorta to the posterior cerebral artery that supplies blood to the hippocampus. Primary cultures of human brain endothelial cells were found to have an extremely high affinity for aluminum when compared to other types of brain cells. Together, these results suggest for the first time that endothelial cells that line the cerebral vasculature may have biochemical attributes conducive to binding and targeting aluminum to selective anatomical regions of the brain, such as the hippocampus, with potential downstream pro-inflammatory and pathogenic consequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720708PMC
http://dx.doi.org/10.1016/j.jinorgbio.2013.05.007DOI Listing

Publication Analysis

Top Keywords

human brain
12
aluminum
8
cerebral arteries
8
alzheimer's disease
8
high affinity
8
brain hippocampus
8
blood hippocampus
8
endothelial cells
8
brain
7
hippocampus
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!