The multifaceted effects of omega-3 polyunsaturated Fatty acids on the hallmarks of cancer.

J Lipids

Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK ; Department of Imaging, Leicester Royal Infirmary, Leicester LE1 5WW, UK.

Published: June 2013

Omega-3 polyunsaturated fatty acids, in particular eicosapentaenoic acid, and docosahexaenoic acid have been shown to have multiple beneficial antitumour actions that affect the essential alterations that dictate malignant growth. In this review we explore the putative mechanisms of action of omega-3 polyunsaturated fatty acid in cancer protection in relation to self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasion, and how these will hopefully translate from bench to bedside.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671553PMC
http://dx.doi.org/10.1155/2013/261247DOI Listing

Publication Analysis

Top Keywords

omega-3 polyunsaturated
12
polyunsaturated fatty
12
fatty acids
8
multifaceted effects
4
effects omega-3
4
acids hallmarks
4
hallmarks cancer
4
cancer omega-3
4
acids eicosapentaenoic
4
eicosapentaenoic acid
4

Similar Publications

Flaxseed, a rich source of omega-3 polyunsaturated fatty acid alpha-linolenic acid (ALA), lignans, and soluble fiber, has attracted attention for its potential to improve multiple cardiometabolic risk factors. While its benefits are well-recognized, comprehensive evaluations of its direct impact on clinical outcomes, such as the prevention or progression of cardiometabolic diseases, remain limited. Additionally, its potential to support healthy aging and longevity through fundamental biological mechanisms has not been fully elucidated.

View Article and Find Full Text PDF

Specialized pro-resolving lipid mediators in gut immunophysiology: from dietary precursors to inflammation resolution.

Curr Opin Clin Nutr Metab Care

January 2025

William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square.

Purpose Of Review: This review aims to examine recent research on the role of specialized pro-resolving mediators (SPMs) in the regulation of gut immunophysiology.

Recent Findings: Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, driven by disruptions in the intestinal barrier and an imbalance between the host immune system and gut microbiota. Dietary polyunsaturated fatty acids (PUFAs), especially ω-3 and ω-6, are key regulators of immune responses and help maintain the integrity of the intestinal barrier.

View Article and Find Full Text PDF

The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short- to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase (FADS1), delta-6 desaturase (FADS2), and elongase (ELOVL2) on changes in RBC and plasma biomarkers.

View Article and Find Full Text PDF

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!