p38 signaling and receptor recycling events in a microfluidic endothelial cell adhesion assay.

PLoS One

Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America.

Published: January 2014

Adhesion-based microfluidic cell separation has proven to be very useful in applications ranging from cancer diagnostics to tissue engineering. This process involves functionalizing microchannel surfaces with a capture molecule. High specificity and purity capture can be achieved using this method. Despite these advances, little is known about the mechanisms that govern cell capture within these devices and their relationships to basic process parameters such as fluid shear stress and the presence of soluble factors. This work examines how the adhesion of human endothelial cells (ECs) is influenced by a soluble tetrapeptide, Arg-Glu-Asp-Val (REDV) and fluidic shear stress. The ability of these ECs to bind within microchannels coated with REDV is shown to be governed by shear- and soluble-factor mediated changes in p38 mitogen-activated protein kinase expression together with recycling of adhesion receptors from the endosome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676332PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065828PLOS

Publication Analysis

Top Keywords

shear stress
8
p38 signaling
4
signaling receptor
4
receptor recycling
4
recycling events
4
events microfluidic
4
microfluidic endothelial
4
endothelial cell
4
cell adhesion
4
adhesion assay
4

Similar Publications

Active fluids are driven out of thermodynamic equilibrium by internally generated forces, causing complex patterns of motion. Even when both the forces and motion are measurable, it is not yet possible to relate the two, because the sources of energy injection and dissipation are often unclear. Here, we study how energy is transferred by developing a method to measure viscosity from the shear stresses and strain rates within an epithelial cell monolayer.

View Article and Find Full Text PDF

The stability of kinetic-level convection cells (wherein the magnitude of macroscopic and microscopic velocities are of same order) is studied in a two-dimensional Yukawa liquid under the effect of microscopic velocity perturbations. Our numerical experiments demonstrate that for a given system aspect ratio β viz., the ratio of system length [Formula: see text] to its height [Formula: see text] and number of convective rolls initiated [Formula: see text], the fate of the convective cells is decided by [Formula: see text].

View Article and Find Full Text PDF

Loess is extensively developed on both sides of the Longwu River, a tributary of the Yellow River, Tongren County, Qinghai Province. The engineering geological characteristics are complex, and landslide disasters are highly developed. Based on field geological surveys and physical property analysis of the loess in this area, this study analyzes the influence of water content, consolidation pressure, and soil disturbance on the dynamic characteristics of loess using GDS dynamic triaxial tests.

View Article and Find Full Text PDF

Local hemodynamics play an essential role in the initiation and progression of coronary artery disease. While vascular geometry alters local hemodynamics, the relationship between vascular structure and hemodynamics is poorly understood. Previous computational fluid dynamics (CFD) studies have explored how anatomy influences plaque-promoting hemodynamics.

View Article and Find Full Text PDF

Aim: Branch atheromatous disease (BAD), characterized by the occlusion of perforating branches near the orifice of a parent artery, often develops early neurological deterioration because the mechanisms underlying BAD remain unclear. Abnormal wall shear stress (WSS) is strongly associated with endothelial dysfunction and plaque growth or rupture. Therefore, we hypothesized that computational fluid dynamics (CFD) modeling could detect differences in WSS between BAD and small-vessel occlusion (SVO), both of which result from perforating artery occlusion/stenosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!