Evaluation of the mutational status of KRAS is a crucial step for the correct therapeutic approach in treating advanced colorectal cancer as the identification of wild-type KRAS tumors leads to more specific and less toxic treatments for patients. Although several studies have highlighted the differences between primary and metastatic tumors, the possibility of two or more mutations in the same codon has seldom been reported. The present study reports an additional case of an advanced adenocarcinoma of the colon showing two somatic mutations (p.G12D and p.G12V) in the same codon (codon 12) of exon 2 of the KRAS gene, thus supporting the possibility of two differing clonal origins of the tumor. Although the clinical significance of multiple mutations remains unknown at present, based on the limited data available in the literature, this rare event appears to be associated with a more aggressive disease, as in the present case. This case report demonstrates the existence of intratumoral heterogeneity and the coexistence of distinct clones within a tumor that may have profound clinical implications for disease progression and therapeutic responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678636 | PMC |
http://dx.doi.org/10.3892/ol.2013.1255 | DOI Listing |
Methods Enzymol
January 2025
Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomicity, Ishikawa, Japan. Electronic address:
Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy.
Anderson-Fabry disease is a hereditary, progressive, multisystemic lysosomal storage disorder caused by a functional deficiency of the enzyme α-galactosidase A (α-GalA). This defect is due to mutations in the gene, located in the long arm of the X chromosome (Xq21-22). Functional deficiency of the α-GalA enzyme leads to reduced degradation and accumulation of its substrates, predominantly globotriaosylceramide (Gb3), which accumulate in the lysosomes of numerous cell types, giving rise to the symptomatology.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy.
Anderson-Fabry (or Fabry) disease is a rare lysosomal storage disorder caused by a functional deficiency of the enzyme alpha-galactosidase A. The partial or total defect of this lysosomal enzyme, which is caused by variants in the gene, leads to the accumulation of glycosphingolipids, mainly globotriaosylceramide in the lysosomes of different cell types. The clinical presentation of Fabry disease is multisystemic and can vary depending on the specific genetic variants associated with the disease.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia.
The advent of next-generation sequencing (NGS) has revolutionized the analysis of genetic data, enabling rapid identification of pathogenic variants in patients with inborn errors of immunity (IEI). Sometimes, the use of NGS-based technologies is associated with challenges in the evaluation of the clinical significance of novel genetic variants. In silico prediction tools, such as SpliceAI neural network, are often used as a first-tier approach for the primary examination of genetic variants of uncertain clinical significance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!