Role for granulocyte colony stimulating factor in angiotensin II-induced neutrophil recruitment and cardiac fibrosis in mice.

Am J Hypertens

Key Laboratory of Remodeling-Related Cardiovascular Diseases, Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Ministry of Education, Beijing, China.

Published: October 2013

Background: Granulocyte colony stimulating factor (G-CSF) is a key mediator of neutrophil infiltration and is profibrotic in the liver, lung, and infarcted heart, but its roles in angiotensin II (Ang II)-induced hypertension and cardiac remodeling have not been fully determined. Thus, we sought to investigate the causal relation of G-CSF to neutrophil recruitment and cardiac fibrosis in C57BL/6J mice.

Methods: Hypertension and cardiac fibrosis were induced in wild-type (WT) mice receiving continuous infusion of Ang II (1,500ng/kg/min). After 7 days, heart sections were stained with hematoxylin and eosin, Masson's trichrome, and immunohistochemistry. The mRNA expression of cytokines was detected by real-time polymerase chain reaction analysis. The protein levels were measured by Western blot analysis.

Results: After Ang II infusion, myocardial G-CSF expression was significantly elevated in the hearts. Moreover, WT mice exhibited increased blood pressure, marked neutrophil accumulation, proinflammatory cytokine expression, reactive oxygen species production, and cardiac fibrosis after 7 days of Ang II infusion. However, administration of anti-G-CSF neutralizing antibody, but not with control immunoglobulin G, significantly attenuated these effects. In addition, neutralizing G-CSF antibody reversed Ang II-induced activation of ERK1/2, STAT3, and AKT signaling pathways in the hearts.

Conclusions: This study demonstrates that G-CSF plays a critical role in hypertension and cardiac fibrosis and targeting this cytokine may be a novel therapeutic strategy to ameliorate hypertensive heart disease.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajh/hpt095DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
20
hypertension cardiac
12
granulocyte colony
8
colony stimulating
8
stimulating factor
8
neutrophil recruitment
8
recruitment cardiac
8
ang ii-induced
8
ang infusion
8
cardiac
6

Similar Publications

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.

View Article and Find Full Text PDF

Cirrhotic cardiomyopathy (CCM) is a diagnostic entity defined as cardiac dysfunction (diastolic and/or systolic) in patients with liver cirrhosis, in the absence of overt cardiac disorder. Pathogenically, CCM stems from a combination of systemic and local hepatic factors that, through hemodynamic and neurohormonal changes, affect the balance of cardiac function and lead to its remodeling. Vascular changes in cirrhosis, mostly driven by portal hypertension, splanchnic vasodilatation, and increased cardiac output alongside maladaptively upregulated feedback systems, lead to fluid accumulation, venostasis, and cardiac dysfunction.

View Article and Find Full Text PDF

Multimodal Screening for Pulmonary Arterial Hypertension in Systemic Scleroderma: Current Methods and Future Directions.

Medicina (Kaunas)

December 2024

Department of Rheumatology and Physiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania.

Systemic sclerosis (SSc) is an immuno-inflammatory rheumatic disease that can affect both the skin and internal organs through fibrosis. Pulmonary arterial hypertension (PAH) is one of the most severe secondary complications. Structural changes in the vascular bed lead to increased pressures in the pulmonary circulation, severely impacting the right heart and significantly affecting mortality.

View Article and Find Full Text PDF

Systematic Analysis of UFMylation Family Genes in Tissues of Mice with Metabolic Dysfunction-Associated Steatotic Liver Disease.

Genes (Basel)

December 2024

Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China.

Background/objectives: UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as a defender of liver homeostasis in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the regulation of UFMylation in MASLD remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!