Functional analysis of the rice vacuolar zinc transporter OsMTP1.

J Exp Bot

Centre for Biological Science, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1B, UK.

Published: July 2013

AI Article Synopsis

Article Abstract

Heavy metal homeostasis is maintained in plant cells by specialized transporters which compartmentalize or efflux metal ions, maintaining cytosolic concentrations within a narrow range. OsMTP1 is a member of the cation diffusion facilitator (CDF)/metal tolerance protein (MTP) family of metal cation transporters in Oryza sativa, which is closely related to Arabidopsis thaliana MTP1. Functional complementation of the Arabidopsis T-DNA insertion mutant mtp1-1 demonstrates that OsMTP1 transports Zn in planta and localizes at the tonoplast. When heterologously expressed in the yeast mutant zrc1 cot1, OsMTP1 complemented its Zn hypersensitivity and was also localized to the vacuole. OsMTP1 alleviated, to some extent, the Co sensitivity of this mutant, rescued the Fe hypersensitivity of the ccc1 mutant at low Fe concentrations, and restored growth of the Cd-hypersensitive mutant ycf1 at low Cd concentrations. These results suggest that OsMTP1 transports Zn but also Co, Fe, and Cd, possibly with lower affinity. Site-directed mutagenesis studies revealed two substitutions in OsMTP1 that alter the transport function of this protein. OsMTP1 harbouring a substitution of Leu82 to a phenylalanine can still transport low levels of Zn, with an enhanced affinity for Fe and Co, and a gain of function for Mn. A substitution of His90 with an aspartic acid completely abolishes Zn transport but improves Fe transport in OsMTP1. These amino acid residues are important in determining substrate specificity and may be a starting point for refining transporter activity in possible biotechnological applications, such as biofortification and phytoremediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697945PMC
http://dx.doi.org/10.1093/jxb/ert136DOI Listing

Publication Analysis

Top Keywords

osmtp1
9
osmtp1 transports
8
low concentrations
8
mutant
5
functional analysis
4
analysis rice
4
rice vacuolar
4
vacuolar zinc
4
zinc transporter
4
transporter osmtp1
4

Similar Publications

Mineral elements typically act as transported substrates for metal tolerance proteins (MTPs). The chelation of MTPs with heavy metal ions is a suggestive detoxification pathway in plants; therefore, the trade-off between transporting mineral elements and chelating excess toxic metal ions is inevitable. Gallium (Ga) is an emerging pollutant associated with high-tech industries.

View Article and Find Full Text PDF

The role of arbuscular mycorrhizal fungi in micronutrient homeostasis and cadmium uptake and transfer in rice under different flooding intensities.

Ecotoxicol Environ Saf

October 2024

Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Jinying Road, Guangzhou 510640, China. Electronic address:

Flooding intensity significantly alters the availability of iron (Fe), zinc (Zn), and cadmium (Cd) in paddy soil. However, the influence of arbuscular mycorrhizal fungi (AMF) on the uptake and transfer of Cd and micronutrients (Fe and Zn) under Cd stress in varying flooding conditions is not well understood. A pot experiment was conducted to investigate the micronutrient homeostasis and Cd uptake and transfer in rice cultivated in Cd-contaminated soil with AMF inoculation under continuous and intermittent flooding conditions.

View Article and Find Full Text PDF

Developing high-yielding rice varieties that possess favorable agronomic characteristics and enhanced grain Zn content is crucial in ensuring food security and addressing nutritional needs. This research employed ICIM, IM, and multi-parent population QTL mapping methods to identify important genetic regions associated with traits such as DF, PH, NT, NP, PL, YLD, TGW, GL, GW, Zn, and Fe. Two populations of recombinant inbred lines consisting of 373 lines were phenotyped for agronomic, yield and grain micronutrient traits for three seasons at IRRI, and genotyped by sequencing.

View Article and Find Full Text PDF

This study aimed to develop a biostimulant formulation using humic acid (HA), silicon, and biochar alone or in combination to alleviate the lethality induced by combined heavy metals (HM-C; As, Cd, and Pb), drought stress (DS; 30-40% soil moisture), and salt stress (SS; 150 mM NaCl) in rice. The results showed that HA, Si, and biochar application alone or in combination improved plant growth under normal, DS, and SS conditions significantly. However, HA increased the lethality of rice by increasing the As, Cd, and Pb uptake significantly, thereby elevating lipid peroxidation.

View Article and Find Full Text PDF

Microorganisms have recently gained recognition as efficient biological tool for reducing heavy metal toxicity in crops. In this experiment, we isolated a potent heavy metal (As, Ni, and Cr) resistant rhizobacterium Serratia marcescens DB1 and detected its plant growth promoting traits such as phosphate solubilization, gibberellin synthesis, organic acid production and amino acid regulation. Based on these findings, DB1 was further investigated for application in a rice var.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!