This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486386 | PMC |
http://dx.doi.org/10.1123/mcj.17.3.298 | DOI Listing |
In Vitro Model
June 2024
Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH UK.
Unlabelled: Wound debridement is commonplace in expediting wound healing in the clinic. Despite this, there are limited resources available for simulation training for practitioners prior to facing real-life patients. Typically, citrus peels or porcine skin are employed in a vain attempt to improve debridement proficiency, yet these fail to provide a realistic experience of the textures and consistencies of wounds.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, MA, Cambridge, USA.
Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA.
Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Psychological Institute and Network Aging Research, Heidelberg University, Heidelberg, Germany.
Background: Immersive virtual reality (iVR) has emerged as a training method to prepare medical first responders (MFRs) for mass casualty incidents (MCIs) and disasters in a resource-efficient, flexible, and safe manner. However, systematic evaluations and validations of potential performance indicators for virtual MCI training are still lacking.
Objective: This study aimed to investigate whether different performance indicators based on visual attention, triage performance, and information transmission can be effectively extended to MCI training in iVR by testing if they can discriminate between different levels of expertise.
Elife
January 2025
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Canada.
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!