Mechanical ventilation with large tidal volumes can increase lung alveolar permeability and initiate inflammatory responses, termed ventilator-induced lung injury (VILI). VILI is characterized by an influx of inflammatory cells, increased pulmonary permeability, and endothelial and epithelial cell death. But the underlying molecular mechanisms that regulate VILI remain unclear. The purpose of this study was to investigate the mechanisms that regulate pulmonary endothelial barrier in an animal model of VILI. These data suggest that SC5b-9, as the production of the complement activation, causes increase in rat pulmonary microvascular permeability by inducing activation of RhoA and subsequent phosphorylation of myosin light chain and contraction of endothelial cells, resulting in gap formation. In general, the complement-mediated increase in pulmonary microvascular permeability may participate in VILI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12013-013-9675-8DOI Listing

Publication Analysis

Top Keywords

pulmonary microvascular
12
ventilator-induced lung
8
lung injury
8
mechanisms regulate
8
microvascular permeability
8
vili
5
sc5b-9-induced pulmonary
4
endothelial
4
microvascular endothelial
4
endothelial hyperpermeability
4

Similar Publications

Hepatopulmonary syndrome (HPS) is a severe lung injury caused by chronic liver disease, with limited understanding of the disease pathology. Exosomes are important mediators of intercellular communication that modulates various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies have indicated that a new long noncoding RNA (lncRNA), PICALM-AU1, is mainly expressed in cholangiocytes, and is dramatically induced in the liver during HPS.

View Article and Find Full Text PDF

Background: The relationship between diabetes mellitus (DM) and asthma is complex and can impact disease trajectories.

Aim: To explore the bidirectional influences between the two conditions on clinical outcomes and disease control.

Methods: We systematically reviewed the literature on the relationship between DM and asthma, focusing on their impacts, mechanisms, and therapeutic implications.

View Article and Find Full Text PDF

Background: Lipopolysaccharide (LPS)-induced apoptosis of lung microvascular endothelial cells (ECs) is the main reason of lung edema and acute lung injury (ALI) in septic conditions. Telocytes (TCs) are a distinct type of interstitial cells found around the lung microvasculature, which may protect ECs through the release of shed vesicles. However, whether TCs protect against LPS-induced EC apoptosis and ALI has not been determined.

View Article and Find Full Text PDF

Critically ill patients with cirrhosis and liver failure not uncommonly have hypotension due to multifactorial reasons, that include hyperdynamic state with increased cardiac index, low systemic vascular resistance due to portal hypertension, following the use of beta blocker or diuretic therapy, and severe sepsis. These changes are mediated by microvascular alterations in the liver, systemic inflammation, activation of renin angiotensin aldosterone system, and vasodilatation due to endothelial dysfunction. Hemodynamic assessment includes measuring inferior vena cava indices, cardiac output and systemic vascular resistance using point-of-care ultrasound (POCUS), in addition to arterial waveform analysis, or pulmonary artery pressures, and lactate clearance to guide fluid resuscitation.

View Article and Find Full Text PDF

Introduction: Ischaemic heart disease (IHD) and cerebrovascular disease are leading causes of morbidity and mortality worldwide. Cerebral small vessel disease (CSVD) is a leading cause of dementia and stroke. While coronary small vessel disease (coronary microvascular dysfunction) causes microvascular angina and is associated with increased morbidity and mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!