Random sampling process leads to overestimation of β-diversity of microbial communities.

mBio

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.

Published: June 2013

AI Article Synopsis

Article Abstract

The site-to-site variability in species composition, known as β-diversity, is crucial to understanding spatiotemporal patterns of species diversity and the mechanisms controlling community composition and structure. However, quantifying β-diversity in microbial ecology using sequencing-based technologies is a great challenge because of a high number of sequencing errors, bias, and poor reproducibility and quantification. Herein, based on general sampling theory, a mathematical framework is first developed for simulating the effects of random sampling processes on quantifying β-diversity when the community size is known or unknown. Also, using an analogous ball example under Poisson sampling with limited sampling efforts, the developed mathematical framework can exactly predict the low reproducibility among technically replicate samples from the same community of a certain species abundance distribution, which provides explicit evidences of random sampling processes as the main factor causing high percentages of technical variations. In addition, the predicted values under Poisson random sampling were highly consistent with the observed low percentages of operational taxonomic unit (OTU) overlap (<30% and <20% for two and three tags, respectively, based on both Jaccard and Bray-Curtis dissimilarity indexes), further supporting the hypothesis that the poor reproducibility among technical replicates is due to the artifacts associated with random sampling processes. Finally, a mathematical framework was developed for predicting sampling efforts to achieve a desired overlap among replicate samples. Our modeling simulations predict that several orders of magnitude more sequencing efforts are needed to achieve desired high technical reproducibility. These results suggest that great caution needs to be taken in quantifying and interpreting β-diversity for microbial community analysis using next-generation sequencing technologies. IMPORTANCE Due to the vast diversity and uncultivated status of the majority of microorganisms, microbial detection, characterization, and quantitation are of great challenge. Although large-scale metagenome sequencing technology such as PCR-based amplicon sequencing has revolutionized the studies of microbial communities, it suffers from several inherent drawbacks, such as a high number of sequencing errors, biases, poor quantitation, and very high percentages of technical variations, which could greatly overestimate microbial biodiversity. Based on general sampling theory, this study provided the first explicit evidence to demonstrate the importance of random sampling processes in estimating microbial β-diversity, which has not been adequately recognized and addressed in microbial ecology. Since most ecological studies are involved in random sampling, the conclusions learned from this study should also be applicable to other ecological studies in general. In summary, the results presented in this study should have important implications for examining microbial biodiversity to address both basic theoretical and applied management questions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684833PMC
http://dx.doi.org/10.1128/mBio.00324-13DOI Listing

Publication Analysis

Top Keywords

random sampling
16
β-diversity microbial
8
quantifying β-diversity
8
mathematical framework
8
sampling processes
8
sampling
6
random
4
sampling process
4
process leads
4
leads overestimation
4

Similar Publications

The causal association between cardiovascular proteins and diabetic nephropathy: a Mendelian randomization study.

Int Urol Nephrol

January 2025

Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.

Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.

Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.

View Article and Find Full Text PDF

Background: Of the numerous complications encountered by people with diabetes (PWD), the effect on mental health is concerning. Within mental health, diabetes distress (DD) occurs when a patient has unfavourable emotional stress while managing their condition, which can be managed by coping strategies but are less studied together in Indian settings. So, the present study aimed to determine the proportion of DD and associated factors and coping skills among the PWD.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Loneliness and low self-esteem are among the more prominent mental health problems among left-behind children, but most of the current research stays in cross-sectional surveys, with fewer studies proposing specific solutions. In addition, although the effective impact of dance interventions on loneliness and self-esteem has been demonstrated, the impact in the group of left-behind children remains under-explored. Therefore, this study validated the effectiveness of a dance intervention on loneliness and self-esteem in left-behind children through a 16-week randomised controlled trial.

View Article and Find Full Text PDF

Background: Despite prior observational studies suggesting a link between gut microbiota to Kawasaki disease (KD), these findings remain debated. This study aimed to assess the association between gut microbiota and KD on a genetic level using a two-sample Mendelian randomization (MR) analysis.

Methods: This two-sample MR analysis utilized summary statistics from the largest genome-wide association study meta-analysis on gut microbiota conducted by the MiBioGen consortium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!