Oncostatin M (OSM), a member of the IL-6 family of cytokines, plays important roles in a variety of biological functions, including inflammatory responses. However, the roles of OSM in metabolic diseases are unknown. We herein analyzed the metabolic parameters of OSM receptor β subunit-deficient (OSMRβ(-/-)) mice under normal diet conditions. At 32 weeks of age, OSMRβ(-/-) mice exhibited mature-onset obesity, severer hepatic steatosis, and insulin resistance. Surprisingly, insulin resistance without obesity was observed in OSMRβ(-/-) mice at 16 weeks of age, suggesting that insulin resistance precedes obesity in OSMRβ(-/-) mice. Both OSM and OSMRβ were expressed strongly in the adipose tissue and little in some other metabolic organs, including the liver and skeletal muscle. In addition, OSMRβ is mainly expressed in the adipose tissue macrophages (ATMs) but not in adipocytes. In OSMRβ(-/-) mice, the ATMs were polarized to M1 phenotypes with the augmentation of adipose tissue inflammation. Treatment of OSMRβ(-/-) mice with an anti-inflammatory agent, sodium salicylate, improved insulin resistance. In addition, the stimulation of a macrophage cell line, RAW264.7, and peritoneal exudate macrophages with OSM resulted in the increased expression of M2 markers, IL-10, arginase-1, and CD206. Furthermore, treatment of C57BL/6J mice with OSM increased insulin sensitivity and polarized the phenotypes of ATMs to M2. Thus, OSM suppresses the development of insulin resistance at least in part through the polarization of the macrophage phenotypes to M2, and OSMRβ(-/-) mice provide a unique mouse model of metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724642PMC
http://dx.doi.org/10.1074/jbc.M113.461905DOI Listing

Publication Analysis

Top Keywords

osmrβ-/- mice
28
insulin resistance
24
adipose tissue
16
tissue inflammation
8
metabolic diseases
8
mice
8
weeks age
8
mice osm
8
osmrβ expressed
8
expressed adipose
8

Similar Publications

Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.

View Article and Find Full Text PDF

Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.

View Article and Find Full Text PDF

Developing an effective vaccine for haemorrhagic septicaemia (HS) in cattle and buffaloes is urgently needed. While preferred for their safety, achieving sufficient, cross-protective, and long-lasting immunity is still challenging when administering inactivated vaccines. This study aimed to assess the efficacy of four inactivating components comprising three inactivating agents: (1) Binary ethylenimine (BEI), (2) Formalin, (3) a combination of BEI and Formalin, and (4) Hydrogen peroxide (HO), in inactivating Pasteurella multocida to enhance HS vaccine potency.

View Article and Find Full Text PDF

lncRNA SNHG6 Knockdown Promotes Microglial M2 Polarization and Alleviates Spinal Cord Injury via Regulating the miR-182-5p/NEUROD4 Axis.

Appl Biochem Biotechnol

January 2025

Department of Neurosurgery, General Medical 300 Hospital, No. 420 Huanghe Road, Guiyang City, 550006, Guizhou Province, China.

Spinal cord injury (SCI) is one of the devastating neurological disorders that leads to a loss of motor and sensory functions. Long non-coding RNA small nucleolar RNA host gene 6 (lncRNA SNHG6) plays a crucial role in inflammatory regulation across various diseases. This study investigates the role of SNHG6 in SCI development and its underlying regulatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!