Ionotropic glutamate receptors are widely distributed in the central nervous system and play a major role in excitatory synaptic transmission. All three ionotropic glutamate subfamilies (i.e. AMPA-type, kainate-type, and NMDA-type) assemble as tetramers of four homologous subunits. There is good evidence that both heteromeric AMPA and kainate receptors have a 2:2 subunit stoichiometry and an alternating subunit arrangement. Recent studies based on presumed structural homology have indicated that NMDA receptors adopt the same arrangement. Here, we use atomic force microscopy imaging of receptor-antibody complexes to show that whereas the GluA1/GluA2 AMPA receptor assembles with an alternating (i.e. 1/2/1/2) subunit arrangement, the GluN1/GluN2A NMDA receptor adopts an adjacent (i.e. 1/1/2/2) arrangement. We conclude that the two types of ionotropic glutamate receptor are built in different ways from their constituent subunits. This surprising finding necessitates a reassessment of the assembly of these important receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724652 | PMC |
http://dx.doi.org/10.1074/jbc.M113.469205 | DOI Listing |
Cell Mol Neurobiol
January 2025
Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.
Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity.
View Article and Find Full Text PDFEcol Evol
January 2025
Hunan Provincial Key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources College of Biology and Environmental Sciences, Jishou University Jishou Hunan China.
Karst caves are a unique environment significantly different from the external environment; adaptation of cave-dwelling animals to the cave environment is often accompanied by shifts in the sensory systems. Aquatic and terrestrial leeches have been found in the karst caves. In this study, we conducted a transcriptome analysis on the cave-dwelling leech .
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China.
-Methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors in the central nervous system (CNS), have garnered attention for their role in brain disorders. Specifically, GluN2A-containing NMDA receptors have emerged as a potential therapeutic target for the treatment of depressive disorders and epilepsy. However, the development of GluN2A-containing NMDA receptor-selective antagonists, represented by -(4-(2-benzoylhydrazine-1-carbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide (TCN-201) and its derivatives, faces a significant challenge due to their limited ability to penetrate the blood-brain barrier (BBB), hampering their characterization and further advancement.
View Article and Find Full Text PDFNeurochem Res
January 2025
Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!