Recent studies have uncovered numerous nucleus-localized proteins encoded by plant RNA viruses. Whereas for some of these viruses nuclear (or, more specifically, nucleolar) passage of the proteins is needed for the virus movement within the plant or suppression of host defense, the nuclear function of these proteins remains largely unknown. Recently, the situation has been clarified for one group of plant RNA viruses, the Carlaviruses. Being positive-stranded RNA viruses, carlaviruses multiply exclusively in the cytoplasm. Chrysanthemum virus B (CVB, a carlavirus) encodes a zinc-finger protein p12 targeted to the nucleus in a nuclear localization signal-dependent manner. In a recent work, we demonstrated that p12 directly interacts with chromatin and plant promoters, thus, acts as a eukaryotic transcription factor (TF) and activates expression of a host TF involved in regulation of cell size and proliferation to favor virus infection. Therefore our studies identified a novel nuclear stage of in CVB infection involving modulation of host gene expression and plant development. Whereas it is well established that any RNA virus actively replicating in the cell causes changes in the transcriptome, our study expanded this view by showing that some positive-stranded RNA viruses can directly manipulate host transcription by encoding eukaryotic TFs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999073 | PMC |
http://dx.doi.org/10.4161/psb.25263 | DOI Listing |
J Med Internet Res
January 2025
Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom.
Background: The literature is equivocal as to whether the predicted negative mental health impact of the COVID-19 pandemic came to fruition. Some quantitative studies report increased emotional problems and depression; others report improved mental health and well-being. Qualitative explorations reveal heterogeneity, with themes ranging from feelings of loss to growth and development.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
Background: The relationships between pectoralis muscle parameters and outcomes in patients with coronavirus disease 2019 (COVID-19) remain uncertain.
Methods: We systematically searched PubMed, Embase, Web of Science and the Cochrane Library from 1 January 2019 to 1 May 2024 to identify non-overlapping studies evaluating pectoralis muscle-associated index on chest CT scan with clinical outcome in COVID-19 patients. Random-effects and fixed-effects meta-analyses were performed, and heterogeneity between studies was quantified using the I2 statistic.
PLoS One
January 2025
Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America.
Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!