Substrate specificity and interferences of a direct-electron-transfer-based glucose biosensor.

J Diabetes Sci Technol

Department of Food Science and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 11/1/56, Vienna, Austria.

Published: May 2013

Objective: Electrochemical sensors for glucose monitoring employ different signal transduction strategies for electron transfer from the biorecognition element to the electrode surface. We present a biosensor that employs direct electron transfer and evaluate its response to various interfering substances known to affect glucose biosensors.

Methods: The enzyme cellobiose dehydrogenase (CDH) was adsorbed on the surface of a carbon working electrode and covalently bound by cross linking. The response of CDH-modified electrodes to glucose and possible interfering compounds was measured by flow-injection analysis, linear sweep, and chronoamperometry.

Results: Chronoamperometry showed initial swelling/wetting of the electrode. After stabilization, the signal was stable and a sensitivity of 0.21 µA mM-1 cm-2 was obtained. To investigate the influence of the interfering substances on the biorecognition element, the simplest possible sensor architecture was used. The biosensor showed little (<5% signal deviation) or no response to various reported electroactive or otherwise interfering substances.

Conclusions: Direct electron transfer from the biorecognition element to the electrode is a new principle applied to glucose biosensors, which can be operated at a low polarization potential of -100 mV versus silver/silver chloride. The reduction of interferences by electrochemically active substances is an attractive feature of this promising technology for the development of continuous glucose biosensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869135PMC
http://dx.doi.org/10.1177/193229681300700312DOI Listing

Publication Analysis

Top Keywords

electron transfer
8
biorecognition element
8
interfering substances
8
substrate specificity
4
specificity interferences
4
interferences direct-electron-transfer-based
4
glucose
4
direct-electron-transfer-based glucose
4
glucose biosensor
4
biosensor objective
4

Similar Publications

Unlocking hexafluoroisopropanol as a practical anion-binding catalyst for living cationic polymerization.

Angew Chem Int Ed Engl

January 2025

Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.

Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.

View Article and Find Full Text PDF

Charge transfer emission between π- and 4f-orbitals in a trivalent europium complex.

Commun Chem

January 2025

Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Photoinduced metal-to-ligand (or ligand-to-metal) charge-transfer (CT) states in metal complexes have been extensively studied toward the development of luminescent materials. However, previous studies have mainly focused on CT transitions between d- and π-orbitals. Herein, we report the demonstration of CT emission from 4f- to π-orbitals using a trivalent europium (Eu(III)) complex, supported by both experimental and theoretical analyses.

View Article and Find Full Text PDF

Enhanced photocatalytic degradation of Rhodamine B using polyaniline-coated XTiO(X = Co, Ni) nanocomposites.

Sci Rep

January 2025

Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.

In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.

View Article and Find Full Text PDF

Ferromagnetic Fe-TiO spin catalysts for enhanced ammonia electrosynthesis.

Nat Commun

January 2025

Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.

Magnetic field effects (MFE) of ferromagnetic spin electrocatalysts have attracted significant attention due to their potential to enhance catalytic activity under an external magnetic field. However, no ferromagnetic spin catalysts have demonstrated MFE in the electrocatalytic reduction of nitrate for ammonia (NORR), a pioneering approach towards NH production involving the conversion from diamagnetic NO to paramagnetic NO. Here, we report the ferromagnetic Fe-TiO to investigate MFE on NORR.

View Article and Find Full Text PDF

Enantioselective reductive cross-couplings to forge C(sp)-C(sp) bonds by merging electrochemistry with nickel catalysis.

Nat Commun

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.

Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!