MicroRNA-199a mediates mucin 1 expression in mouse uterus during implantation.

Reprod Fertil Dev

Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan.

Published: June 2014

Embryo implantation is a complicated process involving interactions between the blastocyst and the luminal epithelium of the receptive uterus. Mucin 1 (MUC1) is an integral membrane glycoprotein expressed apically by secretory epithelial cells and the glandular epithelium in different organs, including the uterus. It is believed that loss of MUC1 on the surface of uterine epithelial cells is necessary for embryo implantation. The endogenous non-protein coding microRNAs (miRNAs) of 21-24 nucleotides are found in diverse organisms. It has been shown that miRNAs participate in a range of cellular processes by regulating gene expression at the post-transcriptional level. In the present study, the regulatory role of miRNA-199a on the expression of MUC1 in mouse uterus during implantation was investigated for its effect on embryo implantation. Western blotting and immunohistochemistry results showed high MUC1 expression on Day 0.5 and low expression by Day 4.5 of pregnancy. In contrast with MUC1 expression, increased miRNA-199a expression was evident at Day 4.5 of pregnancy, as measured by real-time reverse transcription-polymerase chain reaction. In addition, we demonstrated direct binding of miRNA-199a to the 3'-untranslated region of MUC1. Transfection of miRNA-199a into mouse uterine epithelial cells isolated from Day 0.5 of pregnancy also downregulated expression of MUC1. Therefore, the present study provides evidence that MUC1 is a direct target of miRNA-199a and suggests that development of novel strategies to facilitate a successful pregnancy and repair implantation failure humans may include miRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD12097DOI Listing

Publication Analysis

Top Keywords

embryo implantation
12
epithelial cells
12
day pregnancy
12
expression
8
mouse uterus
8
uterus implantation
8
muc1
8
uterine epithelial
8
mirna-199a expression
8
expression muc1
8

Similar Publications

Association of Arachidonic Acid Metabolism Related Genes With Endometrial Immune Microenvironment and Oxidative Stress in Coupes With Recurrent Implantation Failure.

Am J Reprod Immunol

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China.

Background: Alterations in lipid metabolism were reported to impact human fertility; however, there is limited evidence on the association of lipid metabolism with embryo implantation as well as the etiology of recurrent implantation failure (RIF), especially regarding arachidonic acid metabolism.

Methods: Experimental verification research (16 RIF patients and 30 control patients) based on GEO database analysis (24 RIF patients and 24 control patients). The methods in bioinformatics included differential gene screening, functional enrichment analysis, protein-protein interaction network, cluster analysis, weighted gene co-expression network analysis, and so forth.

View Article and Find Full Text PDF

Reichert's membrane (RM) is a basement membrane of gigantic proportions that surrounds the mammalian embryo following implantation. It is part of the parietal yolk sac, which originates from the wall of the preimplantation blastocyst. RM persists from implantation to birth in rodents and analogous structures occur in other mammals, including primates.

View Article and Find Full Text PDF
Article Synopsis
  • PFOS is a chemical frequently used in industries that can enter the environment and is resistant to breakdown, leading to health concerns.
  • Recent studies show a link between PFOS exposure in humans and various diseases, highlighting its impact on human health.
  • Research indicates that PFOS negatively affects endometrial cell function and morphology, potentially leading to issues with embryo implantation due to mitochondrial damage and alterations in key protein expression.
View Article and Find Full Text PDF

To date, very little is known about how apoptosis and autophagy affect human endometrial stromal cells (ESCs), particularly how these processes might determine the depth of implantation in humans. Before investigating how apoptosis and autophagy might modulate the implantation process in an infertile population, it is necessary to clarify how these processes are regulated in healthy individuals. This study examined the protein expression related to apoptosis and autophagy in primary ESCs from fertile women, particularly in the context of decidualization and embryo contact, using Western blot analysis.

View Article and Find Full Text PDF

Biogenesis of Extracellular Vesicles (EVs) and the Potential Use of Embryo-Derived EVs in Medically Assisted Reproduction.

Int J Mol Sci

December 2024

Department of Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, 2000 Maribor, Slovenia.

Extracellular vesicles (EVs) are lipid bilayer-bound particles released from cells that cannot replicate on their own, play a crucial role in intercellular communication, and are implicated in various physiological and pathological processes. Within the domain of embryo culture media research, extensive studies have been conducted to evaluate embryo viability by analyzing spent culture medium. Advanced methodologies such as metabolomic profiling, proteomic and genomic analyses, transcriptomic profiling, non-coding RNA assessments, and oxidative status measurements have been employed to further understand the molecular characteristics of embryos and improve selection criteria for successful implantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!