A pilot-scale hospital wastewater treatment plant consisting of a primary clarifier, membrane bioreactor, and five post-treatment technologies including ozone (O3), O3/H2O2, powdered activated carbon (PAC), and low pressure UV light with and without TiO2 was operated to test the elimination efficiencies for 56 micropollutants. The extent of the elimination of the selected micropollutants (pharmaceuticals, metabolites and industrial chemicals) was successfully correlated to physical-chemical properties or molecular structure. By mass loading, 95% of all measured micropollutants in the biologically treated hospital wastewater feeding the post-treatments consisted of iodinated contrast media (ICM). The elimination of ICM by the tested post-treatment technologies was 50-65% when using 1.08 g O3/gDOC, 23 mg/L PAC, or a UV dose of 2400 J/m(2) (254 nm). For the total load of analyzed pharmaceuticals and metabolites excluding ICM the elimination by ozonation, PAC, and UV at the same conditions was 90%, 86%, and 33%, respectively. Thus, the majority of analyzed substances can be efficiently eliminated by ozonation (which also provides disinfection) or PAC (which provides micropollutants removal, not only transformation). Some micropollutants recalcitrant to those two post-treatments, such as the ICM diatrizoate, can be substantially removed only by high doses of UV (96% at 7200 J/m(2)). The tested combined treatments (O3/H2O2 and UV/TiO2) did not improve the elimination compared to the single treatments (O3 and UV).

Download full-text PDF

Source
http://dx.doi.org/10.1021/es400708wDOI Listing

Publication Analysis

Top Keywords

hospital wastewater
12
powdered activated
8
activated carbon
8
post-treatment technologies
8
pharmaceuticals metabolites
8
icm elimination
8
elimination
6
micropollutants
5
elimination micropollutants
4
micropollutants post-treatment
4

Similar Publications

Characterization and comparative analysis of antimicrobial resistance in from hospital and municipal wastewater treatment plants.

J Water Health

December 2024

Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Center for Antimicrobial Resistance and Education (CARE), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India E-mail:

The spread of antimicrobial resistance (AMR) poses global health threats, with wastewater treatment plants (WWTPs) as hotspots for its development. Horizontal gene transfer facilitates acquisition of resistance genes, particularly through integrons in . Our study investigates isolates from hospital and municipal WWTPs, focusing on integrons, their temporal correlation and phenotypic and molecular characterization of AMR.

View Article and Find Full Text PDF

Wastewater monitoring - passive sampling for the detection of SARS-CoV-2 and antibiotic resistance genes in wastewater.

Sci Total Environ

December 2024

TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany. Electronic address:

As a lesson learned from the COVID-19 pandemic, wastewater-based epidemiology was recognised and used as an important method for surveillance and early detection of SARS-CoV-2. As a result, consideration of wastewater as a source of public health information has gained new prominence, and there is consensus that similar approaches can be used to detect the spread of other viral pathogens or antimicrobial resistance (AMR) in populations. However, the implementation of wastewater monitoring poses challenges in terms of obtaining representative and meaningful samples.

View Article and Find Full Text PDF

Factors affecting mass inflow of quaternary ammonium compounds into Japanese sewage treatment plants.

J Environ Manage

December 2024

Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan.

Quaternary ammonium compounds (QACs), ecotoxic organic chemicals linked to multidrug resistance, are being used increasingly, for example to prevent the transmission of infections such as covid-19, in households, hospitals, and industry. To understand the locations, fluctuations, and fractions of QACs entering sewers, we monitored 14 QACs (benzalkonium chloride [BAC]-C8, C10, C12, C14, C16, and C18; dialkyldimethylammonium chloride [DDAC]-C8, C10, and C12; alkyltrimethylammonium chloride [ATAC]-C12, C16, and C18; benzethonium chloride; and cetylpyridinium chloride), and a disinfectant (chlorhexidine) in influent at four Japanese sewage treatment plants (STPs) five times throughout a year. Mass inflows were relatively stable throughout the year, indicating that the recent seasonal covid-19 epidemic did not greatly influence them.

View Article and Find Full Text PDF

High activity and specificity of bacteriophage cocktails against carbapenem-resistant belonging to the high-risk clones CG258 and ST307.

Front Microbiol

December 2024

Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.

Introduction: The widespread clinical and environmental dissemination of successful clones of carbapenem-resistant (CRKP) represents a serious global public health threat. In this context, lytic bacteriophages have emerged as a promising alternative for controlling these pathogens. This study describes the biological, structural, and genomic characteristics of lytic bacteriophages against the high-risk CRKP clones CG258 and ST307 and describes their performance in combination.

View Article and Find Full Text PDF

Introduction: The irrational use of antibiotics has facilitated the emergence of multidrug- resistant ., undermining the effectiveness of the currently available antibiotics. Consequently, there is an urgent need to explore new approaches, with phage therapy emerging as a promising alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!