Methimazole (MMI) and propylthiouracil (PTU) are widely used for the treatment of Graves' disease. However, no studies have been reported on the action of these drugs on binding of L-triiodothyronine (T3) to the nuclear receptor. T3 receptors of rat liver nuclei, prepared by differential centrifugation, were extracted with 0.4 M KCl and 5 mM dithiothreitol (DTT). In the assessment of T3 binding to the DTT-reduced receptor, the hepatic nuclear extract was chromatographed on Superose 6 to remove DTT and isolate proteins of relative mass approximately 50,000 (chromatographed nuclear receptors (CNRs)), prior to the addition of [125I]T3 of high specific activity (3300 microCi/micrograms; 1 Ci = 37 GBq). MMI or PTU at 2 mM reduced specific T3 binding to CNR by 84% and 85%, respectively. The inhibitory effects of these reagents and 2 mM sodium arsenite (which complexes dithiols) were additive. Scatchard analyses indicated that neither MMI nor PTU (at 2 mM) significantly altered the affinity constant (Ka) (from 2.41 x 10(9) to 1.74 x 10(9) M-1 for PTU and 1.79 x 10(9) M-1 for MMI), while they both decreased (p less than 0.02) maximal binding capacity (from 0.36 +/- 0.02 to 0.19 +/- 0.02 pmol/mg protein for MMI and 0.17 +/- 0.02 pmol/mg protein for PTU). Dose-response curves showed that 50% inhibition was attained at 0.6 mM PTU or 1.0 mM MMI with approximately 25% inhibition by both at 0.1 mM. Artefactual binding effects by MMI and PTU on [125I]T3 were excluded by chromatography experiments. Similar results were obtained using nuclear receptors prepared from livers of hyperthyroid rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/o90-087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!