Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells.

Chem Asian J

Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611 (United States), Fax: (+1) 352-846-2410; Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, (P.R. China), Fax: (+86) 23-68367257.

Published: October 2013

Prostate cancer results in about 30,000 deaths annually in the United States, making it the second leading cause of cancer mortality in men in the Western world. Therefore, it is of great significance to capture and kill prostate cancer cells. It is well known that cancer stem cells are responsible for the maintenance and metastasis of tumors. This concept offers the possibility of developing a selective therapeutic approach in which cancer stem cells are directly targeted and killed. In this work, aptamers selected against DU145 prostate cancer cells (aptamer CSC1) and their subpopulation of cancer stem cells (aptamer CSC13) were linked to the surfaces of gold nanorods (AuNRs), and the resulting conjugates were successfully used to target and kill both cancer cells and cancer stem cells by near-infrared (NIR) laser irradiation. Even though cancer stem cells represent only a small population among all cancer cells, the entire cell viability was very low after laser irradiation, suggesting that tumorigenesis could be successfully controlled by this aptamer-based method, thus paving the way for early diagnosis and targeted therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201300375DOI Listing

Publication Analysis

Top Keywords

cancer stem
24
stem cells
24
prostate cancer
16
cancer cells
16
cancer
12
cells
10
cells aptamer
8
laser irradiation
8
stem
6
aptamer-conjugated nanorods
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!