A CA-repeat microsatellite in insulin-like growth factor 1 (IGF1) promoter was associated with interindividual variation of circulating IGF1 level. Previously, we reported that such association was due to variation of haplotype unit in a linkage disequilibrium block composed of microsatellite and single-nucleotide polymorphisms (SNPs), suggesting the presence of an interaction between them. In this study, reporter assays were performed to investigate the regulatory effect and interaction of genetic variants on gene expression. We used an in vitro system to compare the transcriptional activities of haplotypes (rs35767:T>C, the CA-repeat microsatellite, rs5742612:T>C, and rs2288377:T>A) in evolutionarily conserved region of IGF1 promoter. In haplotype C-T-T, a longer microsatellite had a lower transcriptional activity (17.6 ± 2.4-fold for 17 repeats and 8.3 ± 1.1-fold for 21 repeats), whereas in haplotype T-C-A, such trend could not be observed, as the microsatellite with 21 repeats had the highest transcriptional activity (17.5 ± 2.3-fold). Because the microsatellite and SNPs affected the transcriptional activity of each other, there may be an interaction between them in the regulation of IGF1 expression. For the first time, we demonstrated that a noncoding microsatellite polymorphism could act as a functional unit and interact with SNPs in the regulation of transcription in human genome.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.22363DOI Listing

Publication Analysis

Top Keywords

transcriptional activity
12
microsatellite
8
insulin-like growth
8
growth factor
8
ca-repeat microsatellite
8
igf1 promoter
8
transcriptional
5
functional interaction
4
snps
4
interaction snps
4

Similar Publications

At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.

View Article and Find Full Text PDF

Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.

View Article and Find Full Text PDF

Human-derived microRNA 21 regulates indole and L-tryptophan biosynthesis transcripts in the gut commensal .

mBio

January 2025

Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.

Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.

View Article and Find Full Text PDF

Multi-omics analysis reveals distinct gene regulatory mechanisms between primary and organoid-derived human hepatocytes.

Dis Model Mech

January 2025

Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Science, Radboud University, Nijmegen 6525GA, The Netherlands.

Hepatic organoid cultures are a powerful model to study liver development and diseases in vitro. However, hepatocyte-like cells differentiated from these organoids remain immature compared to primary human hepatocytes (PHHs), which are the benchmark in the field. Here, we applied integrative single-cell transcriptome and chromatin accessibility analysis to reveal gene regulatory mechanisms underlying these differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!