Descriptions of microbial diversity in healthy and diseased corals are necessary first steps before further investigating the mechanisms that lead to coral pathology. This is the first study that characterizes the microbial associates from healthy corals to yellow band disease (YBD) lesions using two complementary screening techniques of bacterial 16S rRNA genes [amplified 16S ribosomal DNA restriction analysis (ARDRA) of clone libraries and denaturing gradient gel electrophoresis (DGGE)]. Both these techniques showed similar trends, namely a significant difference in the bacterial community and an increase in diversity from healthy to YBD diseased lesions. There was an increase in the number of sequences retrieved of potentially pathogenic bacteria in diseased tissues compared with healthy samples, most notably from the genus Vibrio. Furthermore, we also detected a number of known pathogenic bacteria within the natural healthy microbiota such as Vibrio carchariae and Vibrio harveyi, a result supporting previous studies, showing healthy corals have the ability to harbour these species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1758-2229.2012.00397.x | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. Electronic address:
A zinc(II) coordination polymer, [Zn(Hdhtp)(2,2'-bpy)(HO)] (1), has been utilized as a dual-mode luminescence-colorimetric sensor (Hdhtp = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in Hdhtp can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
Spectroscopic technology is an effective method for estimating rice chlorophyll content. However, redundant spectral information and the complex background of rice in situ challenge the accuracy and robustness of the estimation. To address this problem, this study proposed a band selection method combining spectral color characteristics and established a convolutional neural network (CNN) model based on this method to estimate chlorophyll content of rice for black (background-free), clear, muddy, and green algae-covered backgrounds.
View Article and Find Full Text PDFPlant Dis
January 2025
Colorado State University System, Soil and Crop Sciences, Fort Collins, Colorado, United States;
Wheat is an important cereal crop globally and in the United States, and is the largest crop grown by acreage in Colorado. In June 2023, we observed wheat fields displaying severe yellowing and virus-like disease symptoms in plants across seven eastern Colorado counties (Yuma, Prowers, Kit Carson, Washington, Sedgewick, Morgan, and Weld). Symptomatic plants were prominent in fields and appeared bright yellow, with ringspots, mosaic patterning, and streaking on leaves.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland.
Physical and photophysical properties of starch-based biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NTA) powder as a nanofiller were examined using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), stationary UV-Vis and fluorescence spectroscopy as well as resonance light scattering (RLS) and time-resolved measurements, and where possible, analyzed with reference to pristine NTA solutions. AFM studies revealed that the addition of NTA into the starch biopolymer did not significantly affect surface roughness, with all examined films displaying similar Sq values ranging from 70.7 nm to 79.
View Article and Find Full Text PDFThe optical detection of arsenic (As) in human biological fluids and environmental water samples is presented using alpha-cyclodextrin-modified silver nanoparticles (α/CyD-AgNPs) at the trace level. This method is based on the measurement of a red shift of the LSPR band of α/CyD-AgNPs in the region of 200-800 nm. The color of α/CyD-AgNPs was changed from yellow to colorless by the addition of As(iii).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!