Rolling up a graphene sheet.

Chemphyschem

Università di Bologna, V. F. Selmi 2, 40126 Bologna (Italy).

Published: October 2013

Carbon Nanotubes, CNTs, have been described as rolled-up graphene layers. Matching this concept to experiments has been a great experimental challenge for it requires a method to exfoliate graphite, generate ordered and stable dangling carbon bonds, and roll up the layer without affecting the unpaired electrons of the dangling bonds that finally have to zip up in an orderly fashion: A tall order for any synthetic strategy. The combined use of ultrasonication of graphite in dimethylformamide and addition of ferrocene aldehyde just does it!

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201300337DOI Listing

Publication Analysis

Top Keywords

rolling graphene
4
graphene sheet
4
sheet carbon
4
carbon nanotubes
4
nanotubes cnts
4
cnts described
4
described rolled-up
4
rolled-up graphene
4
graphene layers
4
layers matching
4

Similar Publications

Detecting trace amounts of aflatoxin B (AFB), one of the most toxic food contaminants, is crucial for efficiently preventing potential health risks. Circular aptamers are promising candidates for bioanalytical applications due to their enhanced biological and structural stability as well as their compatibility with rolling circle amplification (RCA). Herein, we employed a high-efficiency magnetic chain graphene oxide-based SELEX to generate circular aptamers that bind AFB with high affinity and selectivity.

View Article and Find Full Text PDF

Untethered Soft Robots Based on 1D and 2D Nanomaterials.

Adv Mater

January 2025

School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.

Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials.

View Article and Find Full Text PDF

To enhance the mechanical properties and electrical conductivity of Al-Cu-Mg-based composites, aluminum matrix composites containing scandium (Sc) and graphene nanoplatelets (GNPs) were fabricated by means of stepwise ball milling, vacuum hot pressing sintering, and hot rolling techniques. When Sc and GNPs were incorporated at concentrations of 0.1 wt% and 0.

View Article and Find Full Text PDF

In this research paper, the factors impacting electrical conductivity of the flexible graphite foils (GFs) produced by different forming processes, namely, either by rolling or pressing, were studied. The relationship between electrical conductivity and texture and structure that formed when producing the material was examined. Correlation was determined between the texture sharpness and anisotropy of electrical conductivity, as well as the extent of impact from the substructural characteristics on the properties' values.

View Article and Find Full Text PDF

Nanomembrane on Graphene: Delamination Dynamics and 3D Construction.

ACS Nano

January 2025

Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China.

Freestanding nanomembranes fabricated by lift-off technology have been widely utilized in microelectromechanical systems, soft electronics, and microrobotics. However, a conventional chemical etching strategy to eliminate nanomembrane adhesion often restricts material choice and compromises quality. Herein, we propose a nanomembrane-on-graphene strategy that leverages the weak van der Waals adhesion on graphene to achieve scalable and controllable release and 3D construction of nanomembranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!