The aim of the present study was to evaluate bioaccumulation of metals in various tissues of the freshwater fish Cyprinus carpio L. exposed to cadmium and copper (a xenobiotic and a microelement). The fish were subjected to short-term (3 h, Cd-S and Cu-S) or long-term (4 weeks, Cd-L and Cu-L) exposures to 100 % 96hLC₅₀ or 10 % 96hLC₅₀, respectively. Blood, gill, liver, head and trunk kidney were isolated weekly from 5 fish of each group for 4 weeks (post-short-term exposure and during long-term exposure). Atomic absorption spectrophotometry technique was applied to measure concentrations of metals (Cd and Cu) in fish tissues. Initial concentrations of copper in fish tissues were higher than levels of cadmium. Cadmium and copper levels increased in all tissues of metal-exposed fish. After short-term exposures (at higher concentration) and during long-term exposures (at lower concentration), similar changes in metal concentrations were observed. The values of accumulation factor (ratio of final to initial metal concentration) were higher for cadmium as compared to copper. Comparison of metal levels and accumulation factors in various tissues revealed that cadmium and copper showed very high affinity to head kidney of common carp (higher than to other tissues), but accumulation factors for cadmium in trunk, head kidney and liver were much higher than for copper. The concentrations of copper in organs of Cu-exposed fish increased only slightly and quickly returned to the control level, which shows that fish organism easily buffered metal level. On the other hand, concentrations of cadmium considerably increased and remained elevated for a long time which suggests that activation of mechanisms of sequestration and elimination of cadmium required more time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901939 | PMC |
http://dx.doi.org/10.1007/s10695-013-9819-1 | DOI Listing |
ChemistryOpen
January 2025
Department of Chemical Oceanography, Cochin University of Science and Technology, Kochi, Kerala, India.
The alga contains salt and heavy metals that are accumulated in algae poses a significant challenge to the safe use of algae in soil fertilization and other applications. This study examines the relevance of algal biomass as an environmentally friendly fertilizer, thereby contributing to sustainable coastal management practices. In this study, the hot and cold extraction method were done to obtain the Ulva rigida extract.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran.
Contamination of aquatic ecosystems with heavy metals poses a significant global issue due to its hazardous effects and persistent accumulation in living organisms. This study analyzed 51 fish samples from two species of Black Fish, Capoeta saadii and Capoeta trutta, collected from Iran's Khorramroud River during the summer and fall of 2022 to assess heavy metal accumulation in their gill, liver, and muscle tissues. After biometry, the studied tissues of each fish were isolated to measure the concentration of heavy metals (cadmium (Cd), zinc (Zn), chromium (Cr), lead (Pb), copper (Cu), and nickel (Ni)).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083, PR China. Electronic address:
Although iron-doped hydroxyapatite (Fe-HAP) and its composites have been reported to immobilize arsenic (As), lead (Pb), and cadmium (Cd), its practical application is limited by the inefficient release of iron and phosphate. In this study, Ochrobactrum anthropic, a phosphate-solubilizing bacterium isolated from a lead-zinc smelting site, was employed to enhance multi-heavy metal immobilization in Fe-HAP-amended soils. O.
View Article and Find Full Text PDFPeerJ
January 2025
Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America.
The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Lab of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China. Electronic address:
A major proportion of metal contaminants in aquatic environments is bound to suspended particulate matter (SPM), yet environmental monitoring typically focuses on dissolved metals, with the filtration step removing SPM. This step may inadvertently hide the potential risks posed by particulate metals. In this study, we used stable isotope tracers to quantify the contributions of SPM-bound metals to the bioaccumulation of nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in Ruditapes philippinarum, a widely distributed clam crucial to global aquaculture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!