4-Deoxypyridoxine improves the viability of isolated pancreatic islets ex vivo.

Islets

Department of Internal Medicine; Seoul National University College of Medicine; Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy; Seoul National University Hospital; Seoul, Republic of Korea; Biomedical Research Institute; Seoul National University Hospital; Seoul, Republic of Korea.

Published: May 2014

The successful islet transplantation, for the treatment of type 1 diabetes, depends on the quantity and the quality of transplanted islets. Previously, it has reported that the significant loss of isolated islet mass could be prevented by sphingolipid metabolite, sphinogosine 1-phophate (S1P). This study was performed to elucidate whether the beneficial effects of S1P maintaining isolated pancreatic islets ex vivo are mimicked by modulation of intracellular S1P. We tested the in vitro effect of various agents that modulate intracellular S1P levels in insulinoma cell lines and isolated islets to compare their anti-apoptotic effects with that of S1P. As results, we discovered that 4-deoxypyridoxine (DOP), which inhibits the degradation of intracellular S1P by inhibiting S1P lyase (SPL) activity, minimized the chemically induced apoptosis of insulinoma cell lines as S1P did. Also, supplementation of DOP in the culture media protected the regression of isolated islets that have been maintained ex vivo at least for 18 h providing the evidence of increasing viability of isolated islets with DOP, which impaired SPL activity. In conclusion, these results suggest that the application of SPL inhibitors could be considered as a supplement for the maintenance of viable islets isolated from donor sources in the process of islet transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.4161/isl.25254DOI Listing

Publication Analysis

Top Keywords

intracellular s1p
12
isolated islets
12
viability isolated
8
isolated pancreatic
8
pancreatic islets
8
islets vivo
8
islet transplantation
8
s1p
8
effects s1p
8
insulinoma cell
8

Similar Publications

Background: Severe disruption of lipid metabolism in vivo is one of the central mechanisms in the development of atherosclerotic vascular injury (AVI). Reverse cholesterol transport (RCT) plays a pivotal role in eliminating excess cholesterol, preventing lipid deposition in the aorta, and reducing plaque formation associated with AVI. Floralozone (FL) reduces endothelial cell injury in AVI rats by regulating sphingosine-1-phosphate (S1P) expression.

View Article and Find Full Text PDF

The aim of this study was to determine the effect of Sparstolonin B (SsnB) on cell proliferation and apoptosis in human breast cancer (MCF-7) and human ovarian epithelial cancer (OVCAR-3) cell lines in the presence and absence of estradiol hemihydrate (ES). Phosphoinositol-3 kinase (PI3K), phosphorylated protein kinase B alpha (p-AKT), phosphorylated mTOR (mechanistic target of rapamycin) signaling proteins, and sphingomyelin/ceramide metabolites were also measured within the scope of the study. The anti-proliferative effects of SsnB therapy were evaluated over a range of times and concentrations.

View Article and Find Full Text PDF

Immunomodulatory Effects of SPHK1 and Its Interaction with TFAP2A in Yellow Drum ().

Int J Mol Sci

December 2024

State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China.

Sphingosine kinases (SPHKs) are essential enzymes that catalyze the phosphorylation of sphingosine to produce sphingosine-1-phosphate (S1P), which plays pivotal roles in inflammation and immune regulation. In this study, genome-wide association analysis (GWAS) identified the gene as closely associated with the resistance of yellow drum () to . Structural prediction showed that YDSPHK1 contains a typical diacylglycerol kinase catalytic (DAGKc) domain (154-291 aa).

View Article and Find Full Text PDF

Structural insights into the engagement of lysophosphatidic acid receptor 1 with different G proteins.

J Struct Biol

December 2024

Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:

Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.

View Article and Find Full Text PDF

Sphingolipids modulate redox signalling during human sperm capacitation.

Hum Reprod

December 2024

Experimental Medicine Division, Department of Medicine, McGill University, Montréal, QC, Canada.

Study Question: What role do sphingolipids have in mediating human sperm capacitation?

Summary Answer: Sphingosine 1-phosphate (S1P) mediates the acquisition of fertilizing competency in human spermatozoa by engaging with its Gi-coupled receptor S1PR1 and promoting production of reactive oxygen species such as nitric oxide and superoxide anion.

What Is Known Already: Bioactive sphingolipids, such as S1P, are fundamental for regulating numerous physiological domains and processes, such as cell membranes and signalling, cell death and proliferation, cell migration and invasiveness, inflammation, and central nervous system development.

Study Design, Size, Duration: Semen samples were obtained from a cohort of 10 healthy non-smoking volunteers (18-30 years old) to investigate the role of S1P in sperm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!