Using the Excess Heat Factor (EHF) to predict the risk of heat related deaths.

J Forensic Leg Med

Forensic Science South Australia, Adelaide, Australia.

Published: July 2013

Extremes of climate are not uncommon in Australia and heatwaves are not infrequent. Periods of high ambient temperature may result in clusters of heat related deaths, which may place strain on forensic facilities. This paper describes the formulation of the Excess Heat Factor using meteorological data to provide a means of predicting death resulting from periods of extreme heat stress. The 2009 South Australian heatwave had the highest ranked Excess Heat Factor in Adelaide's records. There were 58 heat related deaths, with the bulk of the heat related deaths following the peak Excess Heat Factor value (144 °C(2)). The 2008 heatwave had a lower peak Excess Heat Factor value (36 °C(2)); there was only one heat related death, which followed the peak in the Excess Heat Factor. It is proposed that calculation of the Excess Heat Factor from meteorological data could provide a means to predict and identify heat related deaths resulting from extreme weather conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jflm.2012.12.005DOI Listing

Publication Analysis

Top Keywords

excess heat
28
heat factor
28
heat deaths
20
heat
13
peak excess
12
factor meteorological
8
meteorological data
8
data provide
8
excess
7
factor
7

Similar Publications

Impact of hyper- and hypothermia on cellular and whole-body physiology.

J Intensive Care

January 2025

Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.

The incidence of heat-related illnesses and heatstroke continues to rise amidst global warming. Hyperthermia triggers inflammation, coagulation, and progressive multiorgan dysfunction, and, at levels above 40 °C, can even lead to cell death. Blood cells, particularly granulocytes and platelets, are highly sensitive to heat, which promotes proinflammatory and procoagulant changes.

View Article and Find Full Text PDF

Nonlinear exposure-response associations of daytime, nighttime, and day-night compound heatwaves with mortality amid climate change.

Nat Commun

January 2025

School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.

Heatwaves are commonly simplified as binary variables in epidemiological studies, limiting the understanding of heatwave-mortality associations. Here we conduct a multi-country study across 28 East Asian cities that employed the Cumulative Excess Heatwave Index (CEHWI), which represents excess heat accumulation during heatwaves, to explore the potentially nonlinear associations of daytime-only, nighttime-only, and day-night compound heatwaves with mortality from 1981 to 2010. Populations exhibited high adaptability to daytime-only and nighttime-only heatwaves, with non-accidental mortality risks increasing only at higher CEHWI levels (75th-90th percentiles).

View Article and Find Full Text PDF

The prevalence of cardiovascular diseases in China has shown a rising trend. With the patient number of about 8.9 million, heart failure has brought a heavy burden to public health and wellness.

View Article and Find Full Text PDF

Background: Although the association of short-term ozone and heatwave exposure with cerebrovascular disease has been well documented, it remains largely unknown whether their co-exposure could synergistically trigger ischemic stroke (IS) mortality.

Methods: We performed an individual-level, time-stratified case-crossover analysis utilizing province-wide IS deaths (n = 59079) in warm seasons (May-September) during 2016-2019, across Jiangsu, eastern China. Heatwave was defined according to a combination of multiple temperature thresholds (90-97.

View Article and Find Full Text PDF

Drivers of stunting and wasting across serial cross-sectional household surveys of children under 2 years of age in Pakistan: potential contribution of ecological factors.

Am J Clin Nutr

January 2025

Centre for Global Child Health, Hospital for Sick Children, Toronto, Canada; Centre for Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan; Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan. Electronic address:

Background: The impact of direct and indirect drivers on linear growth and wasting in young children is of public health interest. While the contributions of poverty, maternal education, empowerment and birth weight to early childhood growth are well recognized, the contribution of environmental factors like heat, precipitation, agriculture outputs and food security in comparable datasets is less well established.

Objectives: To investigate the association of length-for-age z-score (LAZ) and weight-for-length z-score (WLZ) with various indicators among children under 2 years of age in Pakistan using representative household level nutrition surveys and ecological datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!